SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Netzer H.) ;pers:(Feruglio C.)"

Sökning: WFRF:(Netzer H.) > Feruglio C.

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kakkad, D., et al. (författare)
  • SUPER: II. Spatially resolved ionised gas kinematics and scaling relations in z 2 ∼ AGN host galaxies
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 642
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The SINFONI survey for Unveiling the Physics and Effect of Radiative feedback (SUPER) aims to trace and characterise ionised gas outflows and their impact on star formation in a statistical sample of X-ray selected active galactic nuclei (AGN) at z ∼ 2. We present the first SINFONI results for a sample of 21 Type 1 AGN spanning a wide range in bolometric luminosity (log Lbol = 45.4-47.9 erg s-1). The main aims of this paper are to determine the extension of the ionised gas, characterise the occurrence of AGN-driven outflows, and link the properties of such outflows with those of the AGN. Methods. We used adaptive optics-assisted SINFONI observations to trace ionised gas in the extended narrow line region using the [O» III] λ5007 line. We classified a target as hosting an outflow if its non-parametric velocity of the [O» III] line, w80, was larger than 600 km s-1. We studied the presence of extended emission using dedicated point-spread function (PSF) observations, after modelling the PSF from the Balmer lines originating from the broad line region. Results. We detect outflows in all the Type 1 AGN sample based on the w80 value from the integrated spectrum, which is in the range ∼650-2700 km s-1. There is a clear positive correlation between w80 and the AGN bolometric luminosity (> 99% correlation probability), and the black hole mass (98% correlation probability). A comparison of the PSF and the [O» III] radial profile shows that the [O» III] emission is spatially resolved for ∼35% of the Type 1 sample and the outflows show an extension up to ∼6 kpc. The relation between maximum velocity and the bolometric luminosity is consistent with model predictions for shocks from an AGN-driven outflow. The escape fraction of the outflowing gas increases with the AGN luminosity, although for most galaxies, this fraction is less than 10%.
  •  
2.
  • Lamperti, I., et al. (författare)
  • SUPER: V. ALMA continuum observations of z ∼2 AGN and the elusive evidence of outflows influencing star formation
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 654
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the impact of active galactic nuclei (AGN) ionised outflows on star formation in high-redshift AGN host galaxies, by combining near-infrared integral field spectroscopic (IFS) observations, mapping the H emission and [O iii]5007 outflows, with matched-resolution observations of the rest-frame far-infrared (FIR) emission.We present high-resolution ALMA Band 7 observations of eight X-ray selected AGN (L2-10 keV = 1043:81045:2 erg s1) at z 2 from the SUPER (SINFONI Survey for Unveiling the Physics and Eect of Radiative feedback) sample, targeting the observed-frame 870 m (rest-frame 260 m) continuum at 2 kpc (0.200) spatial resolution. The targets were selected among the SUPER AGN with an [O iii] detection in the IFS maps and with a detection in the FIR photometry. We detected six out of eight targets with signal-to-noise ratio S=N & 10 in the ALMA maps, from which we measured continuum flux densities in the range 0:272:58 mJy and FIR half-light radii (Re) in the range 0:8-2:1 kpc. The other two targets were detected with S/N of 3.6 and 5.9, which are insucient for spatially resolved analysis. The FIR Re of our sample are comparable to other AGN and star-forming galaxies at a similar redshift from the literature. However, combining our sample with the literature samples, we find that the mean FIR size in X-ray AGN (Re = 1:16 0:11 kpc) is slightly smaller than in non-AGN (Re = 1:69 0:13 kpc). From spectral energy distribution fitting, we find that the main contribution to the 260 m flux density is dust heated by star formation, with 4% contribution from AGN-heated dust and 1% from synchrotron emission. The majority of our sample show dierent morphologies for the FIR (mostly due to reprocessed stellar emission) and the ionised gas emission (H and [O iii], mostly due to AGN emission). This could be due to the dierent locations of dust and ionised gas, the dierent sources of the emission (stars and AGN), or the eect of dust obscuration.We are unable to identify any residual H emission, above that dominated by AGN, that could be attributed to star formation. Under the assumption that the FIR emission is a reliable tracer of obscured star formation, we find that the obscured star formation activity in these AGN host galaxies is not clearly aected by the ionised outflows. However, we cannot rule out that star formation suppression is happening on smaller spatial scales than the ones we probe with our observations (<2 kpc) or on dierent timescales.
  •  
3.
  • Vietri, G., et al. (författare)
  • SUPER - III. Broad line region properties of AGNs at z ∼ 2
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 644
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The SINFONI survey for Unveiling the Physics and Effect of Radiative feedback (SUPER) was designed to conduct a blind search for AGN-driven outflows on X-ray-selected AGNs at redshift z similar to 2 with high (similar to 2 kpc) spatial resolution, and to correlate them with the properties of their host galaxy and central black hole. The main aims of this paper are: (a) to derive reliable estimates for the masses of the black holes and accretion rates for the Type-1 AGNs in this survey; and (b) to characterise the properties of the AGN-driven winds in the broad line region (BLR).Methods. We analysed rest-frame optical and UV spectra of 21 Type-1 AGNs. We used H alpha, H beta, and MgII line profiles to estimate the masses of the black holes. We used the blueshift of the CIV line profile to trace the presence of winds in the BLR.Results. We find that the H alpha and H beta line widths are strongly correlated, as is the line continuum luminosity at 5100 angstrom with H alpha line luminosity, resulting in a well-defined correlation between black hole masses estimated from H alpha and H beta. Using these lines, we estimate that the black hole masses for our objects are in the range Log (M-BH/M-circle dot) = 8.4-10.8 and are accreting at lambda (Edd) = 0.04-1.3. Furthermore, we confirm the well-known finding that the CIV line width does not correlate with the Balmer lines and the peak of the line profile is blueshifted with respect to the [OIII]-based systemic redshift. These findings support the idea that the CIV line is tracing outflowing gas in the BLR for which we estimated velocities up to similar to 4700 km s(-1). We confirm the strong dependence of the BLR wind velocity on the UV-to-X-ray continuum slope, the bolometric luminosity, and Eddington ratio. We infer BLR mass outflow rates in the range 0.005-3 M-circle dot yr(-1), revealing a correlation with the bolometric luminosity consistent with that observed for ionised winds in the narrow line region (NLR), and X-ray winds detected in local AGNs, and kinetic power similar to 10(-7)-10(-4)xL(Bol). The coupling efficiencies predicted by AGN-feedback models are much higher than the values reported for the BLR winds in the SUPER sample; although it should be noted that only a fraction of the energy injected by the AGN into the surrounding medium is expected to become kinetic power in the outflow. Finally, we find an anti-correlation between the equivalent width of the [OIII] line and the CIV velocity shift, and a positive correlation between this latter parameter and [OIII] outflow velocity. These findings, for the first time in an unbiased sample of AGNs at z similar to 2, support a scenario where BLR winds are connected to galaxy-scale detected outflows, and are therefore capable of affecting the gas in the NLR located at kiloparsec scale distances.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy