SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nevado Holgado A) ;mspu:(article)"

Sökning: WFRF:(Nevado Holgado A) > Tidskriftsartikel

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Westwood, S., et al. (författare)
  • Plasma Protein Biomarkers for the Prediction of CSF Amyloid and Tau and F-18 -Flutemetamol PET Scan Result
  • 2018
  • Ingår i: Frontiers in Aging Neuroscience. - : Frontiers Media SA. - 1663-4365. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Blood biomarkers may aid in recruitment to clinical trials of Alzheimer's disease (AD) modifying therapeutics by triaging potential trials participants for amyloid positron emission tomography (PET) or cerebrospinal fluid (CSF) A beta and tau tests. Objective: To discover a plasma proteomic signature associated with CSF and PET measures of AD pathology. Methods: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) based proteomics were performed in plasma from participants with subjective cognitive decline (SCD), mild cognitive impairment (MCI), and AD, recruited to the Amsterdam Dementia Cohort, stratified by CSF Tau/A beta(42) (n = 50). Technical replication and independent validation were performed by immunoassay in plasma from SCD, MCI, and AD participants recruited to the Amsterdam Dementia Cohort with CSF measures (n = 100), MCI participants enrolled in the GE067-005 study with [F-18]-Flutemetamol PET amyloid measures (n = 173), and AD, MCI and cognitively healthy participants from the EMIF 500 study with CSF A beta(42) measurements (n = 494). Results: 25 discovery proteins were nominally associated with CSF Tau/A beta(42) (P < 0.05) with associations of ficolin-2 (FCN2), apolipoprotein C -IV and fibrinogen f, chain confirmed by immunoassay (P < 0.05). In the GE067-005 cohort, FCN2 was nominally associated with PET amyloid (P < 0.05) replicating the association with CSF Tau/A beta(42). There were nominally significant associations of complement component 3 with PET amyloid, and apolipoprotein(a), apolipoprotein A-I, ceruloplasmin, and PPY with MCI conversion to AD (all P < 0.05). In the EMIF 500 cohort FCN2 was trending toward a significant relationship with CSF A beta(42) (P approximate to 0.05), while both Al AT and clusterin were nominally significantly associated with CSF A beta(42) (both P < 0.05). Conclusion: Associations of plasma proteins with multiple measures of AD pathology and progression are demonstrated. To our knowledge this is the first study to report an association of FCN2 with AD pathology. Further testing of the proteins in larger independent cohorts will be important.
  •  
3.
  • Kurbatova, N., et al. (författare)
  • Urinary metabolic phenotyping for Alzheimer's disease
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Finding early disease markers using non-invasive and widely available methods is essential to develop a successful therapy for Alzheimer's Disease. Few studies to date have examined urine, the most readily available biofluid. Here we report the largest study to date using comprehensive metabolic phenotyping platforms (NMR spectroscopy and UHPLC-MS) to probe the urinary metabolome in-depth in people with Alzheimer's Disease and Mild Cognitive Impairment. Feature reduction was performed using metabolomic Quantitative Trait Loci, resulting in the list of metabolites associated with the genetic variants. This approach helps accuracy in identification of disease states and provides a route to a plausible mechanistic link to pathological processes. Using these mQTLs we built a Random Forests model, which not only correctly discriminates between people with Alzheimer's Disease and age-matched controls, but also between individuals with Mild Cognitive Impairment who were later diagnosed with Alzheimer's Disease and those who were not. Further annotation of top-ranking metabolic features nominated by the trained model revealed the involvement of cholesterol-derived metabolites and small-molecules that were linked to Alzheimer's pathology in previous studies.
  •  
4.
  • Shi, L., et al. (författare)
  • Multiomics profiling of human plasma and cerebrospinal fluid reveals ATN-derived networks and highlights causal links in Alzheimer's disease
  • 2023
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:8, s. 3359-3364
  • Tidskriftsartikel (refereegranskat)abstract
    • IntroductionThis study employed an integrative system and causal inference approach to explore molecular signatures in blood and CSF, the amyloid/tau/neurodegeneration [AT(N)] framework, mild cognitive impairment (MCI) conversion to Alzheimer's disease (AD), and genetic risk for AD. MethodsUsing the European Medical Information Framework (EMIF)-AD cohort, we measured 696 proteins in cerebrospinal fluid (n = 371), 4001 proteins in plasma (n = 972), 611 metabolites in plasma (n = 696), and genotyped whole-blood (7,778,465 autosomal single nucleotide epolymorphisms, n = 936). We investigated associations: molecular modules to AT(N), module hubs with AD Polygenic Risk scores and APOE4 genotypes, molecular hubs to MCI conversion and probed for causality with AD using Mendelian randomization (MR). ResultsAT(N) framework associated with protein and lipid hubs. In plasma, Proprotein Convertase Subtilisin/Kexin Type 7 showed evidence for causal associations with AD. AD was causally associated with Reticulocalbin 2 and sphingomyelins, an association driven by the APOE isoform. DiscussionThis study reveals multi-omics networks associated with AT(N) and causal AD molecular candidates.
  •  
5.
  • Shi, L., et al. (författare)
  • Plasma Proteomic Biomarkers Relating to Alzheimer's Disease: A Meta-Analysis Based on Our Own Studies
  • 2021
  • Ingår i: Frontiers in Aging Neuroscience. - : Frontiers Media SA. - 1663-4365. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Objective: Plasma biomarkers for the diagnosis and stratification of Alzheimer's disease (AD) are intensively sought. However, no plasma markers are well established so far for AD diagnosis. Our group has identified and validated various blood-based proteomic biomarkers relating to AD pathology in multiple cohorts. The study aims to conduct a meta-analysis based on our own studies to systematically assess the diagnostic performance of our previously identified blood biomarkers. Methods: To do this, we included seven studies that our group has conducted during the last decade. These studies used either Luminex xMAP or ELISA to measure proteomic biomarkers. As proteins measured in these studies differed, we selected protein based on the criteria that it must be measured in at least four studies. We then examined biomarker performance using random-effect meta-analyses based on the mean difference between biomarker concentrations in AD and controls (CTL), AD and mild cognitive impairment (MCI), MCI, and CTL as well as MCI converted to dementia (MCIc) and non-converted (MCInc) individuals. Results: An overall of 2,879 subjects were retrieved for meta-analysis including 1,053 CTL, 895 MCI, 882 AD, and 49 frontotemporal dementia (FTD) patients. Six proteins were measured in at least four studies and were chosen for meta-analyses for AD diagnosis. Of them, three proteins had significant difference between AD and controls, among which alpha-2-macroglobulin (A2M) and ficolin-2 (FCN2) increased in AD while fibrinogen gamma chain (FGG) decreased in AD compared to CTL. Furthermore, FGG significantly increased in FTD compared to AD. None of the proteins passed the significance between AD and MCI, or MCI and CTL, or MCIc and MCInc, although complement component 4 (CC4) tended to increase in MCIc individuals compared to MCInc. Conclusions: The results suggest that A2M, FCN2, and FGG are promising biomarkers to discriminate AD patients from controls, which are worthy of further validation.
  •  
6.
  • Zhang, Y. T., et al. (författare)
  • Predicting AT(N) pathologies in Alzheimer's disease from blood-based proteomic data using neural networks
  • 2022
  • Ingår i: Frontiers in Aging Neuroscience. - : Frontiers Media SA. - 1663-4365. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and objective: Blood-based biomarkers represent a promising approach to help identify early Alzheimer's disease (AD). Previous research has applied traditional machine learning (ML) to analyze plasma omics data and search for potential biomarkers, but the most modern ML methods based on deep learning has however been scarcely explored. In the current study, we aim to harness the power of state-of-the-art deep learning neural networks (NNs) to identify plasma proteins that predict amyloid, tau, and neurodegeneration (AT[N]) pathologies in AD.Methods: We measured 3,635 proteins using SOMAscan in 881 participants from the European Medical Information Framework for AD Multimodal Biomarker Discovery study (EMIF-AD MBD). Participants underwent measurements of brain amyloid 13 (A13) burden, phosphorylated tau (p-tau) burden, and total tau (t-tau) burden to determine their AT(N) statuses. We ranked proteins by their association with A13, p-tau, t-tau, and AT(N), and fed the top 100 proteins along with age and apolipoprotein E (APOE) status into NN classifiers as input features to predict these four outcomes relevant to AD. We compared NN performance of using proteins, age, and APOE genotype with performance of using age and APOE status alone to identify protein panels that optimally improved the prediction over these main risk factors. Proteins that improved the prediction for each outcome were aggregated and nominated for pathway enrichment and protein-protein interaction enrichment analysis.Results: Age and APOE alone predicted A13, p-tau, t-tau, and AT(N) burden with area under the curve (AUC) scores of 0.748, 0.662, 0.710, and 0.795. The addition of proteins significantly improved AUCs to 0.782, 0.674, 0.734, and 0.831, respectively. The identified proteins were enriched in five clusters of AD-associated pathways including human immunodeficiency virus 1 infection, p53 signaling pathway, and phosphoinositide-3-kinase-protein kinase B/Akt signaling pathway.Conclusion: Combined with age and APOE genotype, the proteins identified have the potential to serve as blood-based biomarkers for AD and await validation in future studies. While the NNs did not achieve better scores than the support vector machine model used in our previous study, their performances were likely limited by small sample size.
  •  
7.
  • Ashton, Nicholas J., et al. (författare)
  • A plasma protein classifier for predicting amyloid burden for preclinical Alzheimer's disease.
  • 2019
  • Ingår i: Science advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 5:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A blood-based assessment of preclinical disease would have huge potential in the enrichment of participants for Alzheimer's disease (AD) therapeutic trials. In this study, cognitively unimpaired individuals from the AIBL and KARVIAH cohorts were defined as Aβ negative or Aβ positive by positron emission tomography. Nontargeted proteomic analysis that incorporated peptide fractionation and high-resolution mass spectrometry quantified relative protein abundances in plasma samples from all participants. A protein classifier model was trained to predict Aβ-positive participants using feature selection and machine learning in AIBL and independently assessed in KARVIAH. A 12-feature model for predicting Aβ-positive participants was established and demonstrated high accuracy (testing area under the receiver operator characteristic curve = 0.891, sensitivity = 0.78, and specificity = 0.77). This extensive plasma proteomic study has unbiasedly highlighted putative and novel candidates for AD pathology that should be further validated with automated methodologies.
  •  
8.
  •  
9.
  • Shi, Liu, et al. (författare)
  • Replication study of plasma proteins relating to Alzheimer's pathology.
  • 2021
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279 .- 1552-5260. ; 17:9, s. 1452-1464
  • Tidskriftsartikel (refereegranskat)abstract
    • This study sought to discover and replicate plasma proteomic biomarkers relating to Alzheimer's disease (AD) including both the "ATN" (amyloid/tau/neurodegeneration) diagnostic framework and clinical diagnosis.Plasma proteins from 972 subjects (372 controls, 409 mild cognitive impairment [MCI], and 191 AD) were measured using both SOMAscan and targeted assays, including 4001 and 25 proteins, respectively.Protein co-expression network analysis of SOMAscan data revealed the relation between proteins and "N" varied across different neurodegeneration markers, indicating that the ATN variants are not interchangeable. Using hub proteins, age, and apolipoprotein E ε4 genotype discriminated AD from controls with an area under the curve (AUC) of 0.81 and MCI convertors from non-convertors with an AUC of 0.74. Targeted assays replicated the relation of four proteins with the ATN framework and clinical diagnosis.Our study suggests that blood proteins can predict the presence of AD pathology as measured in the ATN framework as well as clinical diagnosis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy