SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Nguyen Brian) srt2:(2010-2014);mspu:(article)"

Search: WFRF:(Nguyen Brian) > (2010-2014) > Journal article

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bandopadhayay, Pratiti, et al. (author)
  • BET Bromodomain Inhibition of MYC-Amplified Medulloblastoma
  • 2014
  • In: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 20:4, s. 912-925
  • Journal article (peer-reviewed)abstract
    • Purpose:MYC-amplified medulloblastomas are highly lethal tumors. Bromodomain and extraterminal (BET) bromodomain inhibition has recently been shown to suppress MYC-associated transcriptional activity in other cancers. The compound JQ1 inhibits BET bromodomain-containing proteins, including BRD4. Here, we investigate BET bromodomain targeting for the treatment of MYC-amplified medulloblastoma.Experimental Design:We evaluated the effects of genetic and pharmacologic inhibition of BET bromodomains on proliferation, cell cycle, and apoptosis in established and newly generated patient- and genetically engineered mouse model (GEMM)-derived medulloblastoma cell lines and xenografts that harbored amplifications of MYC or MYCN. We also assessed the effect of JQ1 on MYC expression and global MYC-associated transcriptional activity. We assessed the in vivo efficacy of JQ1 in orthotopic xenografts established in immunocompromised mice.Results:Treatment of MYC-amplified medulloblastoma cells with JQ1 decreased cell viability associated with arrest at G1 and apoptosis. We observed downregulation of MYC expression and confirmed the inhibition of MYC-associated transcriptional targets. The exogenous expression of MYC from a retroviral promoter reduced the effect of JQ1 on cell viability, suggesting that attenuated levels of MYC contribute to the functional effects of JQ1. JQ1 significantly prolonged the survival of orthotopic xenograft models of MYC-amplified medulloblastoma (P < 0.001). Xenografts harvested from mice after five doses of JQ1 had reduced the expression of MYC mRNA and a reduced proliferative index.Conclusion:JQ1 suppresses MYC expression and MYC-associated transcriptional activity in medulloblastomas, resulting in an overall decrease in medulloblastoma cell viability. These preclinical findings highlight the promise of BET bromodomain inhibitors as novel agents for MYC-amplified medulloblastoma.
  •  
2.
  •  
3.
  • Gao, Tao, et al. (author)
  • Pdx1 Maintains beta Cell Identity and Function by Repressing an alpha Cell Program
  • 2014
  • In: Cell Metabolism. - : Elsevier BV. - 1550-4131 .- 1932-7420. ; 19:2, s. 259-271
  • Journal article (peer-reviewed)abstract
    • Pdx1 is a homeobox-containing transcription factor that plays a key role in pancreatic development and adult beta cell function. In this study, we traced the fate of adult beta cells after Pdx1 deletion. As expected, beta-cell-specific removal of Pdx1 resulted in severe hyperglycemia within days. Surprisingly, a large fraction of Pdx1-deleted cells rapidly acquired ultrastructural and physiological features of a cells, indicating that a robust cellular reprogramming had occurred. Reprogrammed cells exhibited a global transcriptional shift that included derepression of the alpha cell transcription factor MafB, resulting in a transcriptional profile that closely resembled that of alpha cells. These findings indicate that Pdx1 acts as a master regulator of beta cell fate by simultaneously activating genes essential for beta cell identity and repressing those associated with alpha cell identity. We discuss the significance of these findings in the context of the emerging notion that loss of beta cell identity contributes to the pathogenesis of type 2 diabetes.
  •  
4.
  • Kõljalg, Urmas, et al. (author)
  • Towards a unified paradigm for sequence-based identification of fungi.
  • 2013
  • In: Molecular ecology. - : Wiley. - 1365-294X .- 0962-1083. ; 22:21, s. 5271-7
  • Journal article (peer-reviewed)abstract
    • The nuclear ribosomal internal transcribed spacer (ITS) region is the formal fungal barcode and in most cases the marker of choice for the exploration of fungal diversity in environmental samples. Two problems are particularly acute in the pursuit of satisfactory taxonomic assignment of newly generated ITS sequences: (i) the lack of an inclusive, reliable public reference data set and (ii) the lack of means to refer to fungal species, for which no Latin name is available in a standardized stable way. Here, we report on progress in these regards through further development of the UNITE database (http://unite.ut.ee) for molecular identification of fungi. All fungal species represented by at least two ITS sequences in the international nucleotide sequence databases are now given a unique, stable name of the accession number type (e.g. Hymenoscyphus pseudoalbidus|GU586904|SH133781.05FU), and their taxonomic and ecological annotations were corrected as far as possible through a distributed, third-party annotation effort. We introduce the term 'species hypothesis' (SH) for the taxa discovered in clustering on different similarity thresholds (97-99%). An automatically or manually designated sequence is chosen to represent each such SH. These reference sequences are released (http://unite.ut.ee/repository.php) for use by the scientific community in, for example, local sequence similarity searches and in the QIIME pipeline. The system and the data will be updated automatically as the number of public fungal ITS sequences grows. We invite everybody in the position to improve the annotation or metadata associated with their particular fungal lineages of expertise to do so through the new Web-based sequence management system in UNITE.
  •  
5.
  • Richards, Stephen, et al. (author)
  • Genome Sequence of the Pea Aphid Acyrthosiphon pisum
  • 2010
  • In: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 8:2, s. e1000313-
  • Journal article (peer-reviewed)abstract
    • Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems.
  •  
6.
  • Weinstein, John N., et al. (author)
  • The cancer genome atlas pan-cancer analysis project
  • 2013
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 45:10, s. 1113-1120
  • Journal article (peer-reviewed)abstract
    • The Cancer Genome Atlas (TCGA) Research Network has profiled and analyzed large numbers of human tumors to discover molecular aberrations at the DNA, RNA, protein and epigenetic levels. The resulting rich data provide a major opportunity to develop an integrated picture of commonalities, differences and emergent themes across tumor lineages. The Pan-Cancer initiative compares the first 12 tumor types profiled by TCGA. Analysis of the molecular aberrations and their functional roles across tumor types will teach us how to extend therapies effective in one cancer type to others with a similar genomic profile. © 2013 Nature America, Inc. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view