SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Nguyen G) ;hsvcat:2;mspu:(article)"

Search: WFRF:(Nguyen G) > Engineering and Technology > Journal article

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fenstermacher, M.E., et al. (author)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Journal article (peer-reviewed)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  • Aartsen, M. G., et al. (author)
  • Very high-energy gamma-ray follow-up program using neutrino triggers from IceCube
  • 2016
  • In: Journal of Instrumentation. - 1748-0221 .- 1748-0221. ; 11
  • Journal article (peer-reviewed)abstract
    • We describe and report the status of a neutrino-triggered program in IceCube that generates real-time alerts for gamma-ray follow-up observations by atmospheric-Cherenkov telescopes (MAGIC and VERITAS). While IceCube is capable of monitoring the whole sky continuously, high-energy gamma-ray telescopes have restricted fields of view and in general are unlikely to be observing a potential neutrino-flaring source at the time such neutrinos are recorded. The use of neutrino-triggered alerts thus aims at increasing the availability of simultaneous multi-messenger data during potential neutrino flaring activity, which can increase the discovery potential and constrain the phenomenological interpretation of the high-energy emission of selected source classes (e. g. blazars). The requirements of a fast and stable online analysis of potential neutrino signals and its operation are presented, along with first results of the program operating between 14 March 2012 and 31 December 2015.
  •  
3.
  • Coll, M., et al. (author)
  • Towards Oxide Electronics: a Roadmap
  • 2019
  • In: Applied Surface Science. - : Elsevier BV. - 0169-4332 .- 1873-5584. ; 482, s. 1-93
  • Journal article (peer-reviewed)abstract
    • At the end of a rush lasting over half a century, in which CMOS technology has been experiencing a constant and breathtaking increase of device speed and density, Moore’s law is approaching the insurmountable barrier given by the ultimate atomic nature of matter. A major challenge for 21st century scientists is finding novel strategies, concepts and materials for replacing silicon-based CMOS semiconductor technologies and guaranteeing a continued and steady technological progress in next decades. Among the materials classes candidate to contribute to this momentous challenge, oxide films and heterostructures are a particularly appealing hunting ground. The vastity, intended in pure chemical terms, of this class of compounds, the complexity of their correlated behaviour, and the wealth of functional properties they display, has already made these systems the subject of choice, worldwide, of a strongly networked, dynamic and interdisciplinary research community. Oxide science and technology has been the target of a wide four-year project, named Towards Oxide-Based Electronics (TO-BE), that has been recently running in Europe and has involved as participants several hundred scientists from 29 EU countries. In this review and perspective paper, published as a final deliverable of the TO-BE Action, the opportunities of oxides as future electronic materials for Information and Communication Technologies ICT and Energy are discussed. The paper is organized as a set of contributions, all selected and ordered as individual building blocks of a wider general scheme. After a brief preface by the editors and an introductory contribution, two sections follow. The first is mainly devoted to providing a perspective on the latest theoretical and experimental methods that are employed to investigate oxides and to produce oxide-based films, heterostructures and devices. In the second, all contributions are dedicated to different specific fields of applications of oxide thin films and heterostructures, in sectors as data storage and computing, optics and plasmonics, magnonics, energy conversion and harvesting, and power electronics.
  •  
4.
  • Rieth, M., et al. (author)
  • A brief summary of the progress on the EFDA tungsten materials program
  • 2013
  • In: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115 .- 1873-4820. ; 442:1-3, s. S173-S180
  • Journal article (peer-reviewed)abstract
    • The long-term objective of the European Fusion Development Agreement (EFDA) fusion materials programme is to develop structural and armor materials in combination with the necessary production and fabrication technologies for reactor concepts beyond the International Thermonuclear Experimental Reactor. The programmatic roadmap is structured into four engineering research lines which comprise fabrication process development, structural material development, armor material optimization, and irradiation performance testing, which are complemented by a fundamental research programme on "Materials Science and Modeling." This paper presents the current research status of the EFDA experimental and testing investigations, and gives a detailed overview of the latest results on materials research, fabrication, joining, high heat flux testing, plasticity studies, modeling, and validation experiments.
  •  
5.
  • Rieth, M., et al. (author)
  • Review on the EFDA programme on tungsten materials technology and science
  • 2011
  • In: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115 .- 1873-4820. ; 417:1-3, s. 463-467
  • Journal article (peer-reviewed)abstract
    • All the recent DEMO design studies for helium cooled divertors utilize tungsten materials and alloys, mainly due to their high temperature strength, good thermal conductivity, low erosion, and comparably low activation under neutron irradiation. The long-term objective of the EFDA fusion materials programme is to develop structural as well as armor materials in combination with the necessary production and fabrication technologies for future divertor concepts. The programmatic roadmap is structured into four engineering research lines which comprise fabrication process development, structural material development, armor material optimization, and irradiation performance testing, which are complemented by a fundamental research programme on "Materials Science and Modeling". This paper presents the current research status of the EFDA experimental and testing investigations, and gives a detailed overview of the latest results on fabrication, joining, high heat flux testing, plasticity, modeling, and validation experiments.
  •  
6.
  • Wiedner, M.C., et al. (author)
  • Heterodyne Receiver for Origins
  • 2021
  • In: Journal of Astronomical Telescopes, Instruments, and Systems. - 2329-4221 .- 2329-4124. ; 7:1
  • Journal article (peer-reviewed)abstract
    • The Heterodyne Receiver for Origins (HERO) is the first detailed study of a heterodyne focal plane array receiver for space applications. HERO gives the Origins Space Telescope the capability to observe at very high spectral resolution (R = 107) over an unprecedentedly large far-infrared (FIR) wavelengths range (111 to 617 μm) with high sensitivity, with simultaneous dual polarization and dual-frequency band operation. The design is based on prior successful heterodyne receivers, such as Heterodyne Instrument for the Far-Infrared/Herschel, but surpasses it by one to two orders of magnitude by exploiting the latest technological developments. Innovative components are used to keep the required satellite resources low and thus allowing for the first time a convincing design of a large format heterodyne array receiver for space. HERO on Origins is a unique tool to explore the FIR universe and extends the enormous potential of submillimeter astronomical spectroscopy into new areas of astronomical research.
  •  
7.
  • Van Chien, Trinh, 1989-, et al. (author)
  • Power Control in Cellular Massive MIMO With Varying User Activity : A Deep Learning Solution
  • 2020
  • In: IEEE Transactions on Wireless Communications. - : Institute of Electrical and Electronics Engineers (IEEE). - 1536-1276 .- 1558-2248. ; 19:9, s. 5732-5748
  • Journal article (peer-reviewed)abstract
    • This paper considers the sum spectral efficiency (SE) optimization problem in multi-cell Massive MIMO systems with a varying number of active users. This is formulated as a joint pilot and data power control problem. Since the problem is non-convex, we first derive a novel iterative algorithm that obtains a stationary point in polynomial time. To enable real-time implementation, we also develop a deep learning solution. The proposed neural network, PowerNet, only uses the large-scale fading information to predict both the pilot and data powers. The main novelty is that we exploit the problem structure to design a single neural network that can handle a dynamically varying number of active users; hence, PowerNet is simultaneously approximating many different power control functions with varying number inputs and outputs. This is not the case in prior works and thus makes PowerNet an important step towards a practically useful solution. Numerical results demonstrate that PowerNet only loses 2% in sum SE, compared to the iterative algorithm, in a nine-cell system with up to 90 active users per in each coherence interval, and the runtime was only 0.03 ms on a graphics processing unit (GPU). When good data labels are selected for the training phase, PowerNet can yield better sum SE than by solving the optimization problem with one initial point.
  •  
8.
  • Hüttner, Silvia, 1984, et al. (author)
  • Specific xylan activity revealed for AA9 Lytic Polysaccharide Monooxygenases of the thermophilic fungus Malbranchea cinnamomea by functional characterization
  • 2019
  • In: Applied and Environmental Microbiology. - 1098-5336 .- 0099-2240. ; 85:23
  • Journal article (peer-reviewed)abstract
    • The thermophilic biomass-degrader  Malbranchea cinnamomea  exhibits poor growth on cellulose but excellent growth on hemicelluloses as the sole carbon source. This is surprising considering that its genome encodes eight lytic polysaccharide monooxygenases (LPMOs) from auxiliary activity family 9 (AA9), enzymes known for their high potential in accelerating cellulose depolymerization. We characterized four of the eight ( M. cinnamomea  AA9s)  Mc AA9s, namely,  Mc AA9A,  Mc AA9B,  Mc AA9F, and  Mc AA9H, to gain a deeper understanding about their roles in the fungus. The characterized  Mc AA9s were active on hemicelluloses, including xylan, glucomannan, and xyloglucan, and furthermore, in accordance with transcriptomics data, differed in substrate specificity. Of the  Mc AA9s,  Mc AA9H is unique, as it preferentially cleaves residual xylan in phosphoric acid-swollen cellulose (PASC). Moreover, when exposed to cellulose-xylan blends,  Mc AA9H shows a preference for xylan and for releasing (oxidized) xylooligosaccharides. The cellulose dependence of the xylan activity suggests that a flat conformation, with rigidity similar to that of cellulose microfibrils, is a prerequisite for productive interaction between xylan and the catalytic surface of the LPMO.  Mc AA9H showed a similar trend on xyloglucan, underpinning the suggestion that LPMO activity on hemicelluloses strongly depends on the polymers’ physicochemical context and conformation. Our results support the notion that LPMO multiplicity in fungal genomes relates to the large variety of copolymeric polysaccharide arrangements occurring in the plant cell wall.
  •  
9.
  • Chiesa, Marco, 1987-, et al. (author)
  • Inter-domain networking innovation on steroids : Empowering IXPs with SDN capabilities
  • 2016
  • In: IEEE Communications Magazine. - : Institute of Electrical and Electronics Engineers (IEEE). - 0163-6804 .- 1558-1896. ; 54:10, s. 102-108
  • Journal article (peer-reviewed)abstract
    • While innovation in inter-domain routing has remained stagnant for over a decade, Internet exchange points (IXPs) are consolidating their role as economically advantageous interconnection points for reducing path latencies and exchanging ever increasing amounts of traffic. As such, IXPs appear as a natural place to foster network innovation and assess the benefits of SDN, a recent technological trend that has already boosted innovation within data center networks. In this article, we give a comprehensive overview of use cases for SDN at IXPs, which leverage the superior vantage point of an IXP to introduce advanced features like load balancing and DDoS mitigation. We discuss the benefits of SDN solutions by analyzing real-world data from one of the largest IXPs. We also leverage insights into IXP operations to shape benefits not only for members but also for operators.
  •  
10.
  • Minelli, Caterina, et al. (author)
  • Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles
  • 2022
  • In: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3372 .- 2040-3364. ; 14, s. 4690-4704
  • Journal article (peer-reviewed)abstract
    • We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view