SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Niinemets Ulo) "

Search: WFRF:(Niinemets Ulo)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Arneth, Almut, et al. (author)
  • Induced BVOCs: how to bug our models ?
  • 2010
  • In: Trends in Plant Science. - : Elsevier BV. - 1360-1385. ; 15:3, s. 118-125
  • Journal article (peer-reviewed)abstract
    • Climate-herbivory interactions have been largely debated vis-à-vis ecosystem carbon sequestration. However, invertebrate herbivores also modify emissions of plant biogenic volatile organic compounds (BVOCs). Over the shorter term, they do this by the induction of de novo synthesis of a plethora of compounds; but invertebrates also affect the relative proportions of constitutively BVOCs-emitting plants. Thus, invertebrate-BVOCs interactions have potentially important implications for air quality and climate. Insect outbreaks are expected to increase with warmer climate, but quantitative understanding of BVOCs-invertebrate ecology, climate connections and atmospheric feedback remain as yet elusive. Examination of these interactions requires a description of outbreaks in ecosystem models, combined with quantitative observations on leaf and ecosystem level. We review here recent advances and propose a strategy for inclusion of invertebrate-BVOCs relationships in terrestrial ecosystem models.
  •  
2.
  • Ashworth, Kirsti, et al. (author)
  • Global modelling of volatile organic compound emissions
  • 2013
  • In: Biology, Controls and Models of Tree Volatile Organic Compound Emissions. - Dordrecht : Springer Netherlands. - 1568-2544. - 9789400766051 - 9789400766068 ; 5, s. 451-487
  • Book chapter (peer-reviewed)
  •  
3.
  • Björkman, Anne, 1981, et al. (author)
  • Plant functional trait change across a warming tundra biome
  • 2018
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 562:7725, s. 57-62
  • Journal article (peer-reviewed)abstract
    • The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature–trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.
  •  
4.
  • Falster, Daniel, et al. (author)
  • AusTraits, a curated plant trait database for the Australian flora
  • 2021
  • In: Scientific Data. - : Nature Portfolio. - 2052-4463. ; 8:1
  • Journal article (peer-reviewed)abstract
    • We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge.
  •  
5.
  • Jiang, Mingkai, et al. (author)
  • The fate of carbon in a mature forest under carbon dioxide enrichment
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 580:7802, s. 227-231
  • Journal article (peer-reviewed)abstract
    • Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1–5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration6. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth3–5, it is unclear whether mature forests respond to eCO2 in a similar way. In mature trees and forest stands7–10, photosynthetic uptake has been found to increase under eCO2 without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO2 unclear4,5,7–11. Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO2 exposure. We show that, although the eCO2 treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO2, and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests.
  •  
6.
  • Kattge, Jens, et al. (author)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • In: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Journal article (peer-reviewed)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
7.
  • Kuppler, Jonas, et al. (author)
  • Global gradients in intraspecific variation in vegetative and floral traits are partially associated with climate and species richness
  • 2020
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 29:6, s. 992-1007
  • Journal article (peer-reviewed)abstract
    • AimIntraspecific trait variation (ITV) within natural plant communities can be large, influencing local ecological processes and dynamics. Here, we shed light on how ITV in vegetative and floral traits responds to large‐scale abiotic and biotic gradients (i.e., climate and species richness). Specifically, we tested whether associations of ITV with temperature, precipitation and species richness were consistent with any of four hypotheses relating to stress tolerance and competition. Furthermore, we estimated the degree of correlation between ITV in vegetative and floral traits and how they vary along the gradients.LocationGlobal.Time period1975–2016.Major taxa studiedHerbaceous and woody plants.MethodsWe compiled a dataset of 18,401 measurements of the absolute extent of ITV (measured as the coefficient of variation) in nine vegetative and seven floral traits from 2,822 herbaceous and woody species at 2,372 locations.ResultsLarge‐scale associations between ITV and climate were trait specific and more prominent for vegetative traits, especially leaf morphology, than for floral traits. The ITV showed pronounced associations with climate, with lower ITV values in colder areas and higher values in drier areas. The associations of ITV with species richness were inconsistent across traits. Species‐specific associations across gradients were often idiosyncratic, and covariation in ITV was weaker between vegetative and floral traits than within the two trait groups.Main conclusionsOur results show that, depending on the traits considered, ITV either increased or decreased with climate stress and species richness, suggesting that both factors can constrain or enhance ITV, which might foster plant‐population persistence in stressful conditions. Given the species‐specific responses and covariation in ITV, associations can be hard to predict for traits and species not yet studied. We conclude that consideration of ITV can improve our understanding of how plants cope with stressful conditions and environmental change across spatial and biological scales.
  •  
8.
  • Mencuccini, Maurizio, et al. (author)
  • Leaf economics and plant hydraulics drive leaf : wood area ratios
  • 2019
  • In: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 224:4, s. 1544-1556
  • Journal article (peer-reviewed)abstract
    • Biomass and area ratios between leaves, stems and roots regulate many physiological and ecological processes. The Huber value H-v (sapwood area/leaf area ratio) is central to plant water balance and drought responses. However, its coordination with key plant functional traits is poorly understood, and prevents developing trait-based prediction models. Based on theoretical arguments, we hypothesise that global patterns in H-v of terminal woody branches can be predicted from variables related to plant trait spectra, that is plant hydraulics and size and leaf economics. Using a global compilation of 1135 species-averaged H-v, we show that H-v varies over three orders of magnitude. Higher H-v are seen in short small-leaved low-specific leaf area (SLA) shrubs with low K-s in arid relative to tall large-leaved high-SLA trees with high K-s in moist environments. All traits depend on climate but climatic correlations are stronger for explanatory traits than H-v. Negative isometry is found between H-v and K-s, suggesting a compensation to maintain hydraulic supply to leaves across species. This work identifies the major global drivers of branch sapwood/leaf area ratios. Our approach based on widely available traits facilitates the development of accurate models of above-ground biomass allocation and helps predict vegetation responses to drought.
  •  
9.
  • Quentin, Audrey G, et al. (author)
  • Non-structural carbohydrates in woody plants compared among laboratories.
  • 2015
  • In: Tree physiology. - : Oxford University Press (OUP). - 1758-4469 .- 0829-318X. ; 35:11, s. 1146-1165
  • Journal article (peer-reviewed)abstract
    • Non-structural carbohydrates (NSC) in plant tissue are frequently quantified to make inferences about plant responses to environmental conditions. Laboratories publishing estimates of NSC of woody plants use many different methods to evaluate NSC. We asked whether NSC estimates in the recent literature could be quantitatively compared among studies. We also asked whether any differences among laboratories were related to the extraction and quantification methods used to determine starch and sugar concentrations. These questions were addressed by sending sub-samples collected from five woody plant tissues, which varied in NSC content and chemical composition, to 29 laboratories. Each laboratory analyzed the samples with their laboratory-specific protocols, based on recent publications, to determine concentrations of soluble sugars, starch and their sum, total NSC. Laboratory estimates differed substantially for all samples. For example, estimates for Eucalyptus globulus leaves (EGL) varied from 23 to 116 (mean = 56) mg g(-1) for soluble sugars, 6-533 (mean = 94) mg g(-1) for starch and 53-649 (mean = 153) mg g(-1) for total NSC. Mixed model analysis of variance showed that much of the variability among laboratories was unrelated to the categories we used for extraction and quantification methods (method category R(2) = 0.05-0.12 for soluble sugars, 0.10-0.33 for starch and 0.01-0.09 for total NSC). For EGL, the difference between the highest and lowest least squares means for categories in the mixed model analysis was 33 mg g(-1) for total NSC, compared with the range of laboratory estimates of 596 mg g(-1). Laboratories were reasonably consistent in their ranks of estimates among tissues for starch (r = 0.41-0.91), but less so for total NSC (r = 0.45-0.84) and soluble sugars (r = 0.11-0.83). Our results show that NSC estimates for woody plant tissues cannot be compared among laboratories. The relative changes in NSC between treatments measured within a laboratory may be comparable within and between laboratories, especially for starch. To obtain comparable NSC estimates, we suggest that users can either adopt the reference method given in this publication, or report estimates for a portion of samples using the reference method, and report estimates for a standard reference material. Researchers interested in NSC estimates should work to identify and adopt standard methods.
  •  
10.
  • Salojarvi, Jarkko, et al. (author)
  • Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch
  • 2017
  • In: Nature Genetics. - : NATURE PUBLISHING GROUP. - 1061-4036 .- 1546-1718. ; 49:6, s. 904-912
  • Journal article (peer-reviewed)abstract
    • Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10
Type of publication
journal article (9)
book chapter (1)
Type of content
peer-reviewed (10)
Author/Editor
Niinemets, Ulo (10)
Reich, Peter B (3)
Tjoelker, Mark G (3)
Kattge, Jens (3)
Cornwell, William K. (3)
Onoda, Yusuke (3)
show more...
Wright, Ian J. (3)
Diaz, Sandra (2)
Zieminska, Kasia (2)
Smith, Benjamin (2)
Manzoni, Stefano (2)
Poschlod, Peter (2)
Dainese, Matteo (2)
van Bodegom, Peter M ... (2)
Björkman, Anne, 1981 (2)
Peñuelas, Josep (2)
Atkin, Owen K (2)
Ozinga, Wim A. (2)
Vellend, Mark (2)
Soudzilovskaia, Nade ... (2)
Chapin, F. Stuart (2)
Te Beest, Mariska (2)
Iversen, Colleen M. (2)
Myers-Smith, Isla H. (2)
Karger, Dirk N. (2)
Manning, Peter (2)
Carbognani, Michele (2)
Petraglia, Alessandr ... (2)
Berner, Logan (2)
Dullinger, Stefan (2)
Rumpf, Sabine B. (2)
Venn, Susanna (2)
Bahn, Michael (2)
Blonder, Benjamin (2)
Campetella, Giandieg ... (2)
Cerabolini, Bruno E. ... (2)
Craine, Joseph (2)
Enquist, Brian J. (2)
Milla, Ruben (2)
Ordoñez, Jenny C. (2)
Poorter, Hendrik (2)
Schamp, Brandon (2)
Weiher, Evan (2)
Junker, Robert R. (2)
Moles, Angela T. (2)
Rosell, Julieta A. (2)
Ellsworth, David S. (2)
Kraft, Nathan J. B. (2)
Westoby, Mark (2)
Crous, Kristine Y. (2)
show less...
University
Lund University (4)
University of Gothenburg (3)
Swedish University of Agricultural Sciences (3)
Umeå University (2)
Uppsala University (2)
Stockholm University (2)
show more...
Linköping University (1)
Karlstad University (1)
show less...
Language
English (10)
Research subject (UKÄ/SCB)
Natural sciences (10)
Agricultural Sciences (3)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view