SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nilsson IngMarie) ;pers:(Lara Patricia)"

Sökning: WFRF:(Nilsson IngMarie) > Lara Patricia

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Annika, et al. (författare)
  • Membrane integration and topology of RIFIN and STEVOR proteins of the Plasmodium falciparum parasite
  • 2020
  • Ingår i: The FEBS Journal. - : Wiley. - 1742-464X .- 1742-4658. ; 287:13, s. 2744-2762
  • Tidskriftsartikel (refereegranskat)abstract
    • The malarial parasite Plasmodium exports its own proteins to the cell surfaces of red blood cells (RBCs) during infection. Examples of exported proteins include members of the repetitive interspersed family (RIFIN) and subtelomeric variable open reading frame (STEVOR) family of proteins from Plasmodium falciparum. The presence of these parasite-derived proteins on surfaces of infected RBCs triggers the adhesion of infected cells to uninfected cells (rosetting) and to the vascular endothelium potentially obstructing blood flow. While there is a fair amount of information on the localization of these proteins on the cell surfaces of RBCs, less is known about how they can be exported to the membrane and the topologies they can adopt during the process. The first step of export is plausibly the cotranslational insertion of proteins into the endoplasmic reticulum (ER) of the parasite, and here, we investigate the insertion of three RIFIN and two STEVOR proteins into the ER membrane. We employ a well-established experimental system that uses N-linked glycosylation of sites within the protein as a measure to assess the extent of membrane insertion and the topology it assumes when inserted into the ER membrane. Our results indicate that for all the proteins tested, transmembranes (TMs) 1 and 3 integrate into the membrane, so that the protein assumes an overall topology of Ncyt-Ccyt. We also show that the segment predicted to be TM2 for each of the proteins likely does not reside in the membrane, but is translocated to the lumen.
  •  
2.
  • Cuviello, Flavia, et al. (författare)
  • Membrane insertion and topology of the amino-terminal domain TMD0 of multidrug-resistance associated protein 6 (MRP6)
  • 2015
  • Ingår i: FEBS Letters. - : Wiley. - 0014-5793 .- 1873-3468. ; 589:24, s. 3921-3928
  • Tidskriftsartikel (refereegranskat)abstract
    • The function of the ATP-binding cassette transporter MRP6 is unknown but mutations in its gene cause pseudoxanthoma elasticum. We have investigated the membrane topology of the N-terminal transmembrane domain TMD0 of MRP6 and the membrane integration and orientation propensities of its transmembrane segments (TMs) by glycosylation mapping. Results demonstrate that TMD0 has five TMs, an Nout-Cin topology and that the less hydrophobic TMs have strong preference for their orientation in the membrane that affects the neighboring TMs. Two disease-causing mutations changing the number of positive charges in the loops of TMD0 did not affect the membrane insertion efficiencies of the adjacent TMs.
  •  
3.
  • Gadalla, Salah-Eldin, et al. (författare)
  • EpCAM associates with endoplasmic reticulum aminopeptidase 2 (ERAP2) in breast cancer cells
  • 2013
  • Ingår i: Biochemical and Biophysical Research Communications - BBRC. - : Elsevier BV. - 0006-291X .- 1090-2104. ; 439:2, s. 203-208
  • Tidskriftsartikel (refereegranskat)abstract
    • Epithelial cell adhesion molecule (EpCAM) is an epithelial and cancer cell marker and there is a cumulative and growing evidence of its signaling role. Its importance has been recognized as part of the breast cancer stem cell phenotype, the tumorigenic breast cancer stem cell is EpCAM(+). In spite of its complex functions in normal cell development and cancer, relatively little is known about EpCAM-interacting proteins. We used breast cancer cell lines and performed EpCAM co-immunoprecipitation followed by mass spectrometry in search for novel potentially interacting proteins. The endoplasmic reticulum aminopeptidase 2 (ERAP2) was found to co-precipitate with EpCAM and to co-localize in the cytoplasm/ER and the plasma membrane. ERAP2 is a proteolytic enzyme set in the endoplasmic reticulum (ER) where it plays a central role in the trimming of peptides for presentation by MHC class I molecules. Expression of EpCAM and ERAP2 in vitro in the presence of dog pancreas rough microsomes (ER vesicles) confirmed N-linked glycosylation, processing in ER and the size of EpCAM. The association between ERAP2 and EpCAM is a unique and novel finding that provides new ideas on EpCAM processing and on how antigen presentation may be regulated in cancer.
  •  
4.
  • Goel, Suchi, et al. (författare)
  • RIFINs are adhesins implicated in severe Plasmodium falciparum malaria
  • 2015
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 21:4, s. 314-317
  • Tidskriftsartikel (refereegranskat)abstract
    • Rosetting is a virulent Plasmodium falciparum phenomenon associated with severe malaria. Here we demonstrate that P. falciparum-encoded repetitive interspersed families of polypeptides (RIFINs) are expressed on the surface of infected red blood cells (iRBCs), bind to RBCs-preferentially of blood group A-to form large rosettes and mediate microvascular binding of iRBCs. We suggest that RIFINs have a fundamental role in the development of severe malaria and thereby contribute to the varying global distribution of ABO blood groups in the human population.
  •  
5.
  • Lara, Patricia, et al. (författare)
  • Murine astrotactins 1 and 2 have a similar membrane topology and mature via endoproteolytic cleavage catalyzed by a signal peptidase
  • 2019
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 294:12, s. 4538-4545
  • Tidskriftsartikel (refereegranskat)abstract
    • Astrotactin 1 (Astn1) and Astn2 are membrane proteins that function in glial-guided migration, receptor trafficking, and synaptic plasticity in the brain as well as in planar polarity pathways in the skin. Here we used glycosylation mapping and protease protection approaches to map the topologies of mouse Astn1 and Astn2 in rough microsomal membranes and found that Astn2 has a cleaved N-terminal signal peptide, an N-terminal domain located in the lumen of the rough microsomal membranes (topologically equivalent to the extracellular surface in cells), two transmembrane helices, and a large C-terminal lumenal domain. We also found that Astn1 has the same topology as Astn2, but we did not observe any evidence of signal peptide cleavage in Astn1. Both Astn1 and Astn2 mature through endoproteolytic cleavage in the second transmembrane helix; importantly, we identified the endoprotease responsible for the maturation of Astn1 and Astn2 as the endoplasmic reticulum signal peptidase. Differences in the degree of Astn1 and Astn2 maturation possibly contribute to the higher levels of the C-terminal domain of Astn1 detected on neuronal membranes of the central nervous system. These differences may also explain the distinct cellular functions of Astn1 and Astn2, such as in membrane adhesion, receptor trafficking, and planar polarity signaling.
  •  
6.
  • Lara, Patricia, et al. (författare)
  • Refined topology model of the STT3/Stt3 protein subunit of the oligosaccharyltransferase complex
  • 2017
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 292:27, s. 11349-11360
  • Tidskriftsartikel (refereegranskat)abstract
    • The oligosaccharyltransferase complex, localized in the endoplasmic reticulum (ER) of eukaryotic cells, is responsible for the N-linked glycosylation of numerous protein substrates. The membrane protein STT3 is a highly conserved part of the oligosaccharyltransferase and likely contains the active site of the complex. However, understanding the catalytic determinants of this system has been challenging, in part because of a discrepancy in the structural topology of the bacterial versus eukaryotic proteins and incomplete information about the mechanism of membrane integration. Here, we use a glycosylation mapping approach to investigate these questions. We measured the membrane integration efficiency of the mouse STT3-A and yeast Stt3p transmembrane domains (TMDs) and report a refined topology of the N-terminal half of the mouse STT3-A. Our results show that most of the STT3 TMDs are well inserted into the ER membrane on their own or in the presence of the natural flanking residues. However, for the mouse STT3-A hydrophobic domains 4 and 6 and yeast Stt3p domains 2, 3a, 3c, and 6 we measured reduced insertion efficiency into the ER membrane. Furthermore, we mapped the first half of the STT3-A protein, finding two extra hydrophobic domains between the third and the fourthTMD. This result indicates that the eukaryotic STT3 has 13 transmembrane domains, consistent with the structure of the bacterial homolog of STT3 and setting the stage for future combined efforts to interrogate this fascinating system.
  •  
7.
  • Lara Vasquez, Patricia, 1982- (författare)
  • Integration and topology of membrane proteins related to diseases
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Membranes are boundaries that separate the cell from the external environment.   Membrane proteins can function as e.g. receptors and channels, allowing cells to communicate with the exterior and molecules to pass through the membrane. The biogenesis of membrane proteins involves a protein-conducting channel that aids the hydrophobic segments to partition into the membrane and translocate the hydrophilic loops. Membrane proteins need to fold to its native conformation including post-translational modifications and assembly with other proteins and/or cofactors. If this regulated pathway goes wrong the degradation machinery degrades the protein. If the system is failing can result in serious disorders. The main focus in this thesis is membrane proteins associated to diseases.We have studied mutations in the gene of presenilin 1, which is involved in Alzheimer’s disease. We found that some mutations affect the structure and other the function of the PS1. URG7 is an unknown protein associated with liver cancer. We suggest it is localized and targeted to the ER membrane, having an NoutCin topology. SP-C is important for our lungs to function. Mutations can cause the protein to aggregate. We have studied the highly Val-rich transmembrane segment (poly-Val) and its analogue (poly-Leu) and show that poly-Leu folds into a more compact conformation than poly-Val. We show that the C-terminal chaperon-like BRICHOS domain interacts with the ER membrane, suggesting an involvement in poly-Val folding. We have also confirmed the topology of URG7, MRP6 and SP-C poly-Val/Leu using gGFP that is fused to the C-terminal of the protein.
  •  
8.
  • Lee, Hunsang, et al. (författare)
  • Live-cell topology assessment of URG7, MRP6(102) and SP-C using glycosylatable green fluorescent protein in mammalian cells
  • 2014
  • Ingår i: Biochemical and Biophysical Research Communications - BBRC. - : Elsevier BV. - 0006-291X .- 1090-2104. ; 450:4, s. 1587-1592
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental tools to determine membrane topology of a protein are rather limited in higher eukaryotic organisms. Here, we report the use of glycosylatable GFP (gGFP) as a sensitive and versatile membrane topology reporter in mammalian cells. gGFP selectively loses its fluorescence upon N-linked glycosylation in the ER lumen. Thus, positive fluorescence signal assigns location of gGFP to the cytosol whereas no fluorescence signal and a glycosylated status of gGFP map the location of gGFP to the ER lumen. By using mammalian gGFP, the membrane topology of disease-associated membrane proteins, URG7, MRP6(102), SP-C(Val) and SP-C(Leu) was confirmed. URG7 is partially targeted to the ER, and inserted in C-in, form. MRP6(102) and SP-C(Leu/Val) are inserted into the membrane in C-out form. A minor population of untargeted SP-C is removed by proteasome dependent quality control system.
  •  
9.
  • Nilsson, IngMarie, et al. (författare)
  • The Code for Directing Proteins for Trans location across ER Membrane : SRP Cotranslationally Recognizes Specific Features of a Signal Sequence
  • 2015
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 427:6, s. 1191-1201
  • Tidskriftsartikel (refereegranskat)abstract
    • The signal recognition particle (SRP) cotranslationally recognizes signal sequences of secretory proteins and targets ribosome-nascent chain complexes to the SRP receptor in the endoplasmic reticulum membrane, initiating translocation of the nascent chain through the Sec61 translocon. Although signal sequences do not have homology, they have similar structural regions: a positively charged N-terminus, a hydrophobic core and a more polar C-terminal region that contains the cleavage site for the signal peptidase. Here, we have used site-specific photocrosslinking to study SRP signal sequence interactions. A photoreactive probe was incorporated into the middle of wild-type or mutated signal sequences of the secretory protein preprolactin by in vitro translation of mRNAs containing an amber-stop codon in the signal peptide in the presence of the N-epsilon-(5-azido-2 nitrobenzoyl)-Lys-tRNA(amb) amber suppressor. A homogeneous population of SRP ribosome-nascent chain complexes was obtained by the use of truncated mRNAs in translations performed in the presence of purified canine SRP. Quantitative analysis of the photoadducts revealed that charged residues at the N-terminus of the signal sequence or in the early part of the mature protein have only a mild effect on the SRP signal sequence association. However, deletions of amino acid residues in the hydrophobic portion of the signal sequence severely affect SRP binding. The photocrosslinking data correlate with targeting efficiency and translocation across the membrane. Thus, the hydrophobic core of the signal sequence is primarily responsible for its recognition and binding by SRP, while positive charges fine-tune the SRP signal sequence affinity and targeting to the translocon.
  •  
10.
  • Ostuni, A., et al. (författare)
  • The hepatitis B x antigen anti-apoptotic effector URG7 is localized to the endoplasmic reticulum membrane
  • 2013
  • Ingår i: FEBS Letters. - : Wiley. - 0014-5793 .- 1873-3468. ; 587:18, s. 3058-3062
  • Tidskriftsartikel (refereegranskat)abstract
    • Hepatitis B x antigen up-regulates the liver expression of URG7 that contributes to sustain chronic virus infection and to increase the risk for hepatocellular carcinoma by its anti-apoptotic activity. We have investigated the subcellular localization of URG7 expressed in HepG2 cells and determined its membrane topology by glycosylation mapping in vitro. The results demonstrate that URG7 is N-glycosylated and located to the endoplasmic reticulum membrane with an N-lumen-C-cytosol orientation. The results imply that the anti-apoptotic effect of URG7 could arise from the C-terminal cytosolic tail binding a pro-apoptotic signaling factor and retaining it to the endoplasmic reticulum membrane.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy