SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nilsson Mats) ;pers:(André Mats)"

Sökning: WFRF:(Nilsson Mats) > André Mats

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • André, Mats, et al. (författare)
  • Magnetic reconnection and cold plasma at the magnetopause
  • 2010
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 37:22, s. L22108-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on detailed observations by the four Cluster spacecraft of magnetic reconnection and a Flux Transfer Event (FTE) at the magnetopause. We detect cold (eV) plasma at the magnetopause with two independent methods. We show that the cold ions can be essential for the electric field normal to the current sheet in the separatrix region at the edge of the FTE and for the associated acceleration of ions from the magnetosphere into the reconnection jet. The cold ions have small enough gyroradii to drift inside the limited separatrix region and the normal electric field can be balanced by this drift, E approximate to -v x B. The separatrix region also includes cold accelerated electrons, as part of the reconnection current circuit.
  •  
2.
  • Bader, Alexander, et al. (författare)
  • Proton Temperature Anisotropies in the Plasma Environment of Venus
  • 2019
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 124:5, s. 3312-3330
  • Tidskriftsartikel (refereegranskat)abstract
    • Velocity distribution functions (VDFs) are a key to understanding the interplay between particles and waves in a plasma. Any deviation from an isotropic Maxwellian distribution may be unstable and result in wave generation. Using data from the ion mass spectrometer IMA (Ion Mass Analyzer) and the magnetometer (MAG) onboard Venus Express, we study proton distributions in the plasma environment of Venus. We focus on the temperature anisotropy, that is, the ratio between the proton temperature perpendicular (T-perpendicular to) and parallel (T-parallel to) to the background magnetic field. We calculate average values of T-perpendicular to and T-parallel to for different spatial areas around Venus. In addition we present spatial maps of the average of the two temperatures and of their average ratio. Our results show that the proton distributions in the solar wind are quite isotropic, while at the bow shock stronger perpendicular than parallel heating makes the downstream VDFs slightly anisotropic (T-perpendicular to/T-parallel to > 1) and possibly unstable to generation of proton cyclotron waves or mirror mode waves. Both wave modes have previously been observed in Venus's magnetosheath. The perpendicular heating is strongest in the near-subsolar magnetosheath (T-perpendicular to/ T-parallel to approximate to 3/2), which is also where mirror mode waves are most frequently observed. We believe that the mirror mode waves observed here are indeed generated by the anisotropy. In the magnetotail we observe planetary protons with largely isotropic VDFs, originating from Venus's ionosphere.
  •  
3.
  • Edberg, Niklas J. T., et al. (författare)
  • CME impact on comet 67P/Churyumov-Gerasimenko
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S45-S56
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Rosetta observations from comet 67P/Churyumov-Gerasimenko during the impact of a coronal mass ejection (CME). The CME impacted on 2015 Oct 5-6, when Rosetta was about 800 km from the comet nucleus, and 1.4 au from the Sun. Upon impact, the plasma environment is compressed to the level that solar wind ions, not seen a few days earlier when at 1500 km, now reach Rosetta. In response to the compression, the flux of suprathermal electrons increases by a factor of 5-10 and the background magnetic field strength increases by a factor of similar to 2.5. The plasma density increases by a factor of 10 and reaches 600 cm(-3), due to increased particle impact ionization, charge exchange and the adiabatic compression of the plasma environment. We also observe unprecedentedly large magnetic field spikes at 800 km, reaching above 200 nT, which are interpreted as magnetic flux ropes. We suggest that these could possibly be formed by magnetic reconnection processes in the coma as the magnetic field across the CME changes polarity, or as a consequence of strong shears causing Kelvin-Helmholtz instabilities in the plasma flow. Due to the limited orbit of Rosetta, we are not able to observe if a tail disconnection occurs during the CME impact, which could be expected based on previous remote observations of other CME-comet interactions.
  •  
4.
  • Edberg, Niklas J. T., et al. (författare)
  • Spatial distribution of low-energy plasma around comet 67P/CG from Rosetta measurements
  • 2015
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 42:11, s. 4263-4269
  • Tidskriftsartikel (refereegranskat)abstract
    • We use measurements from the Rosetta plasma consortium Langmuir probe and mutual impedance probe to study the spatial distribution of low-energy plasma in the near-nucleus coma of comet 67P/Churyumov-Gerasimenko. The spatial distribution is highly structured with the highest density in the summer hemisphere and above the region connecting the two main lobes of the comet, i.e., the neck region. There is a clear correlation with the neutral density and the plasma to neutral density ratio is found to be approximate to 1-210(-6), at a cometocentric distance of 10km and at 3.1AU from the Sun. A clear 6.2h modulation of the plasma is seen as the neck is exposed twice per rotation. The electron density of the collisionless plasma within 260km from the nucleus falls off with radial distance as approximate to 1/r. The spatial structure indicates that local ionization of neutral gas is the dominant source of low-energy plasma around the comet.
  •  
5.
  • Eriksson, Anders I., et al. (författare)
  • Cold and warm electrons at comet 67P/Churyumov-Gerasimenko
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 605
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Strong electron cooling on the neutral gas in cometary comae has been predicted for a long time, but actual measurements of low electron temperature are scarce. Aims. Our aim is to demonstrate the existence of cold electrons in the inner coma of comet 67P/Churyumov-Gerasimenko and show filamentation of this plasma. Methods. In situ measurements of plasma density, electron temperature and spacecraft potential were carried out by the Rosetta Langmuir probe instrument, LAP. We also performed analytical modelling of the expanding two-temperature electron gas. Results. LAP data acquired within a few hundred km from the nucleus are dominated by a warm component with electron temperature typically 5-10 eV at all heliocentric distances covered (1.25 to 3.83 AU). A cold component, with temperature no higher than about 0.1 eV, appears in the data as short (few to few tens of seconds) pulses of high probe current, indicating local enhancement of plasma density as well as a decrease in electron temperature. These pulses first appeared around 3 AU and were seen for longer periods close to perihelion. The general pattern of pulse appearance follows that of neutral gas and plasma density. We have not identified any periods with only cold electrons present. The electron flux to Rosetta was always dominated by higher energies, driving the spacecraft potential to order -10 V. Conclusions. The warm (5-10 eV) electron population observed throughout the mission is interpreted as electrons retaining the energy they obtained when released in the ionisation process. The sometimes observed cold populations with electron temperatures below 0.1 eV verify collisional cooling in the coma. The cold electrons were only observed together with the warm population. The general appearance of the cold population appears to be consistent with a Haser-like model, implicitly supporting also the coupling of ions to the neutral gas. The expanding cold plasma is unstable, forming filaments that we observe as pulses.
  •  
6.
  • Gunell, H., et al. (författare)
  • Plasma penetration of the dayside magnetopause
  • 2012
  • Ingår i: Physics of Plasmas. - Melville, NY : AIP Publishing. - 1070-664X .- 1089-7674. ; 19:7, s. 072906-
  • Tidskriftsartikel (refereegranskat)abstract
    • Data from the Cluster spacecraft during their magnetopause crossing on 25 January 2002 are presented. The magnetopause was in a state of slow non-oscillatory motion during the observational period. Coherent structures of magnetosheath plasma, here typified as plasmoids, were seen on closed magnetic field lines on the inside of the magnetopause. Using simultaneous measurements on two spacecraft, the inward motion of the plasmoids is followed from one spacecraft to the next, and it is found to be in agreement with the measured ion velocity. The plasma characteristics and the direction of motion of the plasmoids show that they have penetrated the magnetopause, and the observations are consistent with the concept of impulsive penetration, as it is known from theory, simulations, and laboratory experiments. The mean flux across the magnetopause observed was 0.2%-0.5% of the solar wind flux at the time, and the peak values of the flux inside the plasmoids reached approximately 20% of the solar wind flux.
  •  
7.
  • Gunell, H., et al. (författare)
  • Waves in high-speed plasmoids in the magnetosheath and at the magnetopause
  • 2014
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 32:8, s. 991-1009
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasmoids, defined here as plasma entities with a higher anti-sunward velocity component than the surrounding plasma, have been observed in the magnetosheath in recent years. During the month of March 2007 the Cluster spacecraft crossed the magnetopause near the subsolar point 13 times. Plasmoids with larger velocities than the surrounding magnetosheath were found on seven of these 13 occasions. The plasmoids approach the magnetopause and interact with it. Both whistler mode waves and waves in the lower hybrid frequency range appear in these plasmoids, and the energy density of the waves inside the plasmoids is higher than the average wave energy density in the magnetosheath. When the spacecraft are in the magnetosphere, Alfvenic waves are observed. Cold ions of ionospheric origin are seen in connection with these waves, when the wave electric and magnetic fields combine with the Earth's dc magnetic field to yield an E x B/B-2 drift speed that is large enough to give the ions energies above the detection threshold.
  •  
8.
  • Haaland, S., et al. (författare)
  • Estimating the capture and loss of cold plasma from ionospheric outflow
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117, s. A07311-
  • Tidskriftsartikel (refereegranskat)abstract
    • An important source of magnetospheric plasma is cold plasma from the terrestrial ionosphere. Low energy ions travel along the magnetic field lines and enter the magnetospheric lobes where they are convected toward the tail plasma sheet. Recent observations indicate that the field aligned ion outflow velocity is sometimes much higher than the convection toward the central plasma sheet. A substantial amount of plasma therefore escapes downtail without ever reaching the central plasma sheet. In this work, we use Cluster measurements of cold plasma outflow and lobe convection velocities combined with models of the magnetic field in an attempt to determine the fate of the outflowing ions and to quantify the amount of plasma lost downtail. The results show that both the circulation of plasma and the direct tailward escape of ions varies significantly with magnetospheric conditions. For strong solar wind driving with a southward interplanetary magnetic field, also typically associated with high geomagnetic activity, most of the outflowing plasma is convected to the plasma sheet and recirculated. For periods with northward interplanetary magnetic field, the convection is nearly stagnant, whereas the outflow, although limited, still persists. The dominant part of the outflowing ions escape downtail and are directly lost into the solar wind under such conditions.
  •  
9.
  • Hamrin, Maria, et al. (författare)
  • Evidence for the braking of flow bursts as they propagate toward the Earth
  • 2014
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 119:11, s. 9004-9018
  • Tidskriftsartikel (refereegranskat)abstract
    • In this article we use energy conversion arguments to investigate the possible braking of flow bursts as they propagate toward the Earth. By using EJ data (E and J are the electric field and the current density) observed by Cluster in the magnetotail plasma sheet, we find indications of a plasma deceleration in the region -20 R-E < X < - 15 R-E. Our results suggest a braking mechanism where compressed magnetic flux tubes in so-called dipolarization fronts (DFs) can decelerate incoming flow bursts. Our results also show that energy conversion arguments can be used for studying flow braking and that the position of the flow velocity peak with respect to the DF can be used as a single-spacecraft proxy when determining energy conversion properties. Such a single-spacecraft proxy is invaluable whenever multispacecraft data are not available. In a superposed epoch study, we find that a flow burst with the velocity peak behind the DF is likely to decelerate and transfer energy from the particles to the fields. For flow bursts with the peak flow at or ahead of the DF we see no indications of braking, but instead we find an energy transfer from the fields to the particles. From our results we obtain an estimate of the magnitude of the deceleration of the flow bursts, and we find that it is consistent with previous investigations.
  •  
10.
  • Hamrin, Maria, et al. (författare)
  • The evolution of flux pileup regions in the plasma sheet : Cluster observations
  • 2013
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202 .- 2169-9380 .- 2169-9402. ; 118:10, s. 6279-6290
  • Tidskriftsartikel (refereegranskat)abstract
    • Bursty bulk flows (BBFs) play an important role for the mass, energy, and magnetic flux transport in the plasma sheet, and the flow pattern in and around a BBF has important consequences for the localized energy conversion between the electromagnetic and plasma mechanical energy forms. The plasma flow signature in and around BBFs is often rather complicated. Return flows and plasma vortices are expected to exist at the flanks of the main flow channel, especially near the inner plasma sheet boundary, but also farther down-tail. A dipolarization front (DF) is often observed at the leading edge of a BBF, and a flux pileup region (FPR) behind the DF. Here we present Cluster data of three FPRs associated with vortex flows observed in the midtail plasma sheet on 15 August 2001. According to the principles of Fu et al. (2011, 2012c), two of the FPRs are considered to be in an early stage of evolution (growing FPRs). The third FPR is in a later stage of evolution (decaying FPR). For the first time, the detailed energy conversion properties during various stages of the FPR evolution have been measured. We show that the later stage FPR has a more complex vortex pattern than the two earlier stage FPRs. The two early stage FPR correspond to generators, EJ<0, while the later stage FPR only shows weak generator characteristics and is instead dominated by load signatures at the DF, EJ>0. Moreover, to our knowledge, this is one of the first times BBF-related plasma vortices have been observed to propagate over the spacecraft in the midtail plasma sheet at geocentric distances of about 18R(E). Our observations are compared to recent simulation results and previous observations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy