SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nilsson Ola 1957) ;pers:(Andersson Mattias K 1979)"

Sökning: WFRF:(Nilsson Ola 1957) > Andersson Mattias K 1979

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bümming, Per, 1965, et al. (författare)
  • Gastrointestinal stromal tumors regularly express synaptic vesicle proteins: evidence of a neuroendocrine phenotype.
  • 2007
  • Ingår i: Endocrine-related cancer. - 1351-0088. ; 14:3, s. 853-63
  • Tidskriftsartikel (refereegranskat)abstract
    • Gastrointestinal stromal tumors (GISTs) are thought to originate from the interstitial cells of Cajal, which share many properties with neurons of the gastrointestinal tract. Recently, we demonstrated expression of the hormone ghrelin in GIST. The aim of the present study was therefore to evaluate a possible neuroendocrine phenotype of GIST. Specimens from 41 GISTs were examined for the expression of 12 different synaptic vesicle proteins. Expression of synaptic-like microvesicle proteins, e.g., Synaptic vesicle protein 2 (SV2), synaptobrevin, synapsin 1, and amphiphysin was demonstrated in a majority of GISTs by immunohistochemistry, western blotting, and quantitative reversetranscriptase PCR. One-third of the tumors also expressed the large dense core vesicle protein vesicular monoamine transporter 1. Presence of microvesicles and dense core vesicles in GIST was confirmed by electron microscopy. The expression of synaptic-like microvesicle proteins in GIST was not related to risk profile or to KIT/platelet derived growth factor alpha (PDGFRA) mutational status. Thus, GISTs regularly express a subset of synaptic-like microvesicle proteins necessary for the regulated secretion of neurotransmitters and hormones. Expression of synaptic-like micro-vesicle proteins, ghrelin and peptide hormone receptors in GIST indicate a neuroendocrine phenotype and suggest novel possibilities to treat therapy-resistant GIST.
  •  
2.
  • Andersson, Mattias K, 1979, et al. (författare)
  • The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response
  • 2008
  • Ingår i: BMC Cell Biology. - : Springer Science and Business Media LLC. - 1471-2121. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: FUS, EWS and TAF15 are structurally similar multifunctional proteins that were first discovered upon characterization of fusion oncogenes in human sarcomas and leukemias. The proteins belong to the FET (previously TET) family of RNA-binding proteins and are implicated in central cellular processes such as regulation of gene expression, maintenance of genomic integrity and mRNA/microRNA processing. In the present study, we investigated the expression and cellular localization of FET proteins in multiple human tissues and cell types. RESULTS: FUS, EWS and TAF15 were expressed in both distinct and overlapping patterns in human tissues. The three proteins showed almost ubiquitous nuclear expression and FUS and TAF15 were in addition present in the cytoplasm of most cell types. Cytoplasmic EWS was more rarely detected and seen mainly in secretory cell types. Furthermore, FET expression was downregulated in differentiating human embryonic stem cells, during induced differentiation of neuroblastoma cells and absent in terminally differentiated melanocytes and cardiac muscle cells. The FET proteins were targeted to stress granules induced by heat shock and oxidative stress and FUS required its RNA-binding domain for this translocation. Furthermore, FUS and TAF15 were detected in spreading initiation centers of adhering cells. CONCLUSION: Our results point to cell-specific expression patterns and functions of the FET proteins rather than the housekeeping roles inferred from earlier studies. The localization of FET proteins to stress granules suggests activities in translational regulation during stress conditions. Roles in central processes such as stress response, translational control and adhesion may explain the FET proteins frequent involvement in human cancer.
  •  
3.
  •  
4.
  • Arvidsson, Yvonne, 1960, et al. (författare)
  • Amyloid precursor-like protein 1 is differentially upregulated in neuroendocrine tumours of the gastrointestinal tract.
  • 2008
  • Ingår i: Endocrine-related cancer. - 1351-0088. ; 15:2, s. 569-81
  • Tidskriftsartikel (refereegranskat)abstract
    • We have examined the global gene expression profile of small intestinal carcinoids by microarray analysis. High expression of a number of genes was found including amyloid precursor-like protein 1 (APLP1). Quantitative real-time PCR and western blot analysis demonstrated higher expression of APLP1 in carcinoid metastases relative to primary tumours indicating a role of APLP1 in tumour dissemination. Tissue microarray analysis of gastroentero-pancreatic tumours demonstrated a high frequency of APLP1 expression and a low frequency of APLP2 expression in neuroendocrine (NE) tumours when compared with non-NE tumours at the same sites. Meta-analysis of gene expression data from a large number of tumours outside the gastrointestinal tract confirmed a correlation between APLP1 expression and NE phenotype where high expression of APLP1 was accompanied by downregulation of APLP2 in NE tumours. Cellular localization of APLP1, APLP2 and amyloid precursor protein (APP) in carcinoid cells (GOT1) by confocal microscopy demonstrated partial co-localization with synaptophysin. This suggests that the APP family of proteins is transported to the cell membrane by synaptic microvesicles and that they may influence tumour cell adhesion and invasiveness. We conclude that APLP1 is differentially upregulated in gastrointestinal NE tumours and that APLP1 may be important for the dissemination of small intestinal carcinoids. Identification of APLP1 in NE tumours offers a novel target for treatment and may also serve as a tumour-specific marker.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy