SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nilsson Per) ;pers:(Shariatgorji Mohammadreza)"

Sökning: WFRF:(Nilsson Per) > Shariatgorji Mohammadreza

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Fridjonsdottir, Elva, et al. (författare)
  • Mass spectrometry imaging identifies abnormally elevated brain L-DOPA levels and extrastriatal monoaminergic dysregulation in L-DOPA-induced dyskinesia
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • L-DOPA treatment for Parkinson's disease frequently leads to dyskinesias, the pathophysiology of which is poorly understood. We used MALDI-MSI to map the distribution of L-DOPA and monoaminergic pathways in brains of dyskinetic and nondyskinetic primates. We report elevated levels of L-DOPA, and its metabolite 3-O-methyldopa, in all measured brain regions of dyskinetic animals and increases in dopamine and metabolites in all regions analyzed except the striatum. In dyskinesia, dopamine levels correlated well with L-DOPA levels in extrastriatal regions, such as hippocampus, amygdala, bed nucleus of the stria terminalis, and cortical areas, but not in the striatum. Our results demonstrate that L-DOPA-induced dyskinesia is linked to a dysregulation of L-DOPA metabolism throughout the brain. The inability of extrastriatal brain areas to regulate the formation of dopamine during L-DOPA treatment introduces the potential of dopamine or even L-DOPA itself to modulate neuronal signaling widely across the brain, resulting in unwanted side effects.
  •  
3.
  • Fridjonsdottir, Elva, et al. (författare)
  • Mass spectrometry imaging reveals brain-region specific changes in metabolism and acetylcholine levels in experimental Parkinson’s disease and L-DOPA-induced dyskinesia
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • There is evidence that cholinergic alterations are linked to various motor and non-motor symptoms of Parkinson’s disease. We therefore used mass spectrometry imaging to investigate regional changes in acetylcholine abundance in the brain of a non-human primate model of Parkinson’s disease (PD) and L-DOPA-induced dyskinesia (LID). We also present an experimental design for performing untargeted analysis using MALDI-MSI with multiple experiments incorporating quality control samples to monitor experimental variability. We observed that MPTP treatment (i) led to reductions in putaminal acetylcholine levels that persisted after L-DOPA treatment and (ii) appeared to induce a shift of choline metabolism from α-glycerophosphocholine towards betaine. LID animals exhibited reduced levels of various metabolites important for brain homeostasis including S-adenosylmethionine, glutathione, adenosine monophosphate, and acylcarnitines. The vasculature marker heme B was upregulated in the putamen of LID animals, suggesting increased blood-flow in the dyskinetic putamen. These results provide new insights into pathological choline-related metabolic changes in PD and LID.  
  •  
4.
  • Hulme, Heather, et al. (författare)
  • Simultaneous mass spectrometry imaging of multiple neuropeptides in the brain and alterations induced by experimental parkinsonism and L-DOPA therapy
  • 2020
  • Ingår i: Neurobiology of Disease. - : ACADEMIC PRESS INC ELSEVIER SCIENCE. - 0969-9961 .- 1095-953X. ; 137
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuropeptides are important signalling molecules in the brain and alterations in their expression levels have been linked to neurological disorders such as Parkinson's disease. It is challenging to map neuropeptide changes across and within brain regions because of their low in vivo concentrations and complex post-translational processing. Consequently, the role of neuropeptides in Parkinson's disease is not well understood. Thus, we have developed and evaluated a method to image multiple neuropeptides simultaneously in both rat and primate brain tissue sections by matrix-assisted laser desorption/ionisation mass spectrometry imaging at high lateral resolution. Using a unilateral 6-hydroxydopamine rat model of Parkinson's disease, we imaged changes in enkephalins, dynorphins, tachykinins and neurotensin associated with the dopaminergic denervation and L-DOPA treatment in multiple brain regions. L-DOPA administration significantly affected neuropeptides in the globus pallidus, while neuropeptides in the caudate-putamen were mostly affected by dopamine depletion. Using high lateral resolution imaging, we observed an increase of neurotensin in the dorsal sub-region of the globus pallidus after dopamine depletion. This study highlights the capacity of mass spectrometry imaging to elucidate the dynamics of neuropeptide signalling during Parkinson's disease and its treatment.
  •  
5.
  • Källback, Patrik, et al. (författare)
  • Cross-validated Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Quantitation Protocol for a Pharmaceutical Drug and Its Drug-Target Effects in the Brain Using Time-of-Flight and Fourier Transform Ion Cyclotron Resonance Analyzers
  • 2020
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 92:21, s. 14676-14684
  • Tidskriftsartikel (refereegranskat)abstract
    • Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is an established tool in drug development, which enables visualization of drugs and drug metabolites at spatial localizations in tissue sections from different organs. However, robust and accurate quantitation by MALDI-MSI still remains a challenge. We present a quantitative MALDI-MSI method using two instruments with different types of mass analyzers, i.e., time-of-flight (TOF) and Fourier transform ion cyclotron resonance (FTICR) MS, for mapping levels of the in vivo-administered drug citalopram, a selective serotonin reuptake inhibitor, in mouse brain tissue sections. Six different methods for applying calibration standards and an internal standard were evaluated. The optimized method was validated according to authorities' guidelines and requirements, including selectivity, accuracy, precision, recovery, calibration curve, sensitivity, reproducibility, and stability parameters. We showed that applying a dilution series of calibration standards followed by a homogeneously applied, stable, isotopically labeled standard for normalization and a matrix on top of the tissue section yielded similar results to those from the reference method using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The validation results were within specified limits and the brain concentrations for TOF MS (51.1 +/- 4.4 pmol/mg) and FTICR MS (56.9 +/- 6.0 pmol/mg) did not significantly differ from those of the cross-validated LC-MS/MS method (55.0 +/- 4.9 pmol/mg). The effect of in vivo citalopram administration on the serotonin neurotransmitter system was studied in the hippocampus, a brain region that is the principal target of the serotonergic afferents along with the limbic system, and it was shown that serotonin was significantly increased (2-fold), but its metabolite 5-hydroxyindoleacetic acid was not. This study makes a substantial step toward establishing MALDI-MSI as a fully quantitative validated method.
  •  
6.
  • Shariatgorji, Mohammadreza, et al. (författare)
  • Bromopyrylium Derivatization Facilitates Identification by Mass Spectrometry Imaging of Monoamine Neurotransmitters and Small Molecule Neuroactive Compounds
  • 2020
  • Ingår i: Journal of the American Society for Mass Spectrometry. - : AMER CHEMICAL SOC. - 1044-0305 .- 1879-1123. ; 31:12, s. 2553-2557
  • Tidskriftsartikel (refereegranskat)abstract
    • Mass spectrometry imaging using matrix-assisted laser desorption/ionization and desorption electrospray ionization has recently been employed to investigate the distribution of neurotransmitters, including biogenic amines and amino acids, directly in brain tissue sections. Ionization is facilitated by charge-tagging through pyrylium derivatization of primary amine containing neurotransmitters directly in tissue sections, significantly improving the limit of detection. Since the derivatization adds carbon and hydrogen to the target compounds, the resulting isotopic patterns of the products are not distinctive from those of the nonderivatized species. Here, we describe an approach for chemically modifying the reactive pyrylium ion to introduce the distinct isotopic signature of bromine in mass spectra of chemically derivatized substances in tissue sections. The method enables monoamine compounds to be distinguished directly in tissue sections, facilitating their identification.
  •  
7.
  • Shariatgorji, Mohammadreza, et al. (författare)
  • Comprehensive mapping of neurotransmitter networks by MALDI-MS imaging
  • 2019
  • Ingår i: Nature Methods. - : NATURE PUBLISHING GROUP. - 1548-7091 .- 1548-7105. ; 16:10, s. 1021-1028
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a mass spectrometry imaging (MSI) approach for the comprehensive mapping of neurotransmitter networks in specific brain regions. Our fluoromethylpyridinium-based reactive matrices facilitate the covalent charge-tagging of molecules containing phenolic hydroxyl and/or primary or secondary amine groups, including dopaminergic and serotonergic neurotransmitters and their associated metabolites. These matrices improved the matrix-assisted laser desorption/ionization (MALDI)-MSI detection limit toward low-abundance neurotransmitters and facilitated the simultaneous imaging of neurotransmitters in fine structures of the brain at a lateral resolution of 10 mu m. We demonstrate strategies for the identification of unknown molecular species using the innate chemoselectivity of the reactive matrices and the unique isotopic pattern of a brominated reactive matrix. We illustrate the capabilities of the developed method on Parkinsonian brain samples from human post-mortem tissue and animal models. The direct imaging of neurotransmitter systems provides a method for exploring how various neurological diseases affect specific brain regions through neurotransmitter modulation.
  •  
8.
  • Shariatgorji, Mohammadreza, et al. (författare)
  • Deuterated Matrix-Assisted Laser Desorption Ionization Matrix Uncovers Masked Mass Spectrometry Imaging Signals of Small Molecules
  • 2012
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 84:16, s. 7152-7157
  • Tidskriftsartikel (refereegranskat)abstract
    • D-4-alpha-Cyano-4-hydroxycinnamic acid (D-4-CHCA) has been synthesized for use as a matrix for matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) and MALDI-MS imaging (MSI) of small molecule drugs and endogenous compounds. MALDI-MS analysis of small molecules has historically been hindered by interference from matrix ion clusters and fragment peaks that mask signals of low molecular weight compounds of interest. By using D-4-CHCA, the cluster and fragment peaks of CHCA, the most common matrix for analysis of small molecules, are shifted by + 4, + 8 and + 12 Da, which expose signals across areas of the previously concealed low mass range. Here, obscured MALDI-MS signals of a synthetic small molecule pharmaceutical, a naturally occurring isoquinoline alkaloid, and endogenous compounds including the neurotransmitter acetylcholine have been unmasked and imaged directly from biological tissue sections.
  •  
9.
  • Shariatgorji, Mohammadreza, et al. (författare)
  • Direct targeted quantitative molecular imaging of neurotransmitters in brain tissue sections
  • 2014
  • Ingår i: Neuron. - : Elsevier BV. - 0896-6273 .- 1097-4199. ; 84:4, s. 697-707
  • Tidskriftsartikel (refereegranskat)abstract
    • Current neuroimaging techniques have very limited abilities to directly identify and quantify neurotransmitters from brain sections. We have developed a molecular-specific approach for the simultaneous imaging and quantitation of multiple neurotransmitters, precursors, and metabolites, such as tyrosine, tryptamine, tyramine, phenethylamine, dopamine, 3-methoxytyramine, serotonin, GABA, glutamate, acetylcholine, and L-alpha-glycerylphosphorylcholine, in histological tissue sections at high spatial resolutions. The method is employed to directly measure changes in the absolute and relative levels ofneurotransmitters in specific brain structures in animal disease models and in response to drug treatments, demonstrating the power of mass spectrometry imaging in neuroscience.
  •  
10.
  • Shariatgorji, Mohammadreza, et al. (författare)
  • Pyrylium Salts as Reactive Matrices for MALDI-MS Imaging of Biologically Active Primary Amines
  • 2015
  • Ingår i: Journal of the American Society for Mass Spectrometry. - : American Chemical Society (ACS). - 1044-0305 .- 1879-1123. ; 26:6, s. 934-939
  • Tidskriftsartikel (refereegranskat)abstract
    • Many neuroactive substances, including endogenous biomolecules, environmental compounds, and pharmaceuticals possess primary amine functional groups. Among these are catecholamine neurotransmitters (e.g., dopamine), many substituted phenethylamines (e.g., amphetamine), as well as amino acids and neuropeptides. In most cases, mass spectrometric (ESI and MALDI) analyses of trace amounts of such compounds are challenging because of their poor ionization properties. We present a method for chemical derivatization of primary amines by reaction with pyrylium salts that facilitates their detection by MALDI-MS and enables the imaging of primary amines in brain tissue sections. A screen of pyrylium salts revealed that the 2,4-diphenyl-pyranylium ion efficiently derivatizes primary amines and can be used as a reactive MALDI-MS matrix that induces both derivatization and desorption. MALDI-MS imaging with such matrix was used to map the localization of dopamine and amphetamine in brain tissue sections and to quantitatively map the distribution of the neurotoxin beta-N-methylamino-L-alanine.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23
Typ av publikation
tidskriftsartikel (17)
annan publikation (4)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (17)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Nilsson, Anna (23)
Andrén, Per E. (18)
Svenningsson, Per (15)
Vallianatou, Theodos ... (14)
Fridjonsdottir, Elva (8)
visa fler...
Zhang, Xiaoqun (7)
Goodwin, Richard J. ... (6)
Bézard, Erwan (6)
Källback, Patrik (6)
Andrén, Per E., Prof ... (5)
Shariatgorji, R (4)
Schintu, Nicoletta (4)
Karlgren, Maria (3)
Strittmatter, Nicole (3)
Hulme, Heather (3)
Mantas, Ioannis (3)
Pereira, Marcela (3)
Odell, Luke R (2)
Alvarsson, Alexandra (2)
Lodén, Henrik (2)
Crossman, Alan R (2)
Wadensten, Henrik (2)
Marklund, Niklas (1)
Sävmarker, Jonas, 19 ... (1)
Yoshitake, Takashi (1)
Kehr, Jan (1)
Aerts, Jordan T. (1)
Karlsson, Oskar (1)
Goodwin, Richard (1)
Loryan, Irena, 1977- (1)
Gunnarsdóttir, Halla (1)
Fernagut, Pierre-Oli ... (1)
Li, Qin (1)
Clausen, Fredrik (1)
Hamm, Gregory (1)
Millan, Mark J. (1)
Schembri, Luke S (1)
Jansson, Erik T. (1)
Limbeck, Andreas (1)
Chergui, Karima (1)
Barré, Florian (1)
Webborn, Peter J. H. (1)
Källbäck, Patrik (1)
Katan, Luay (1)
Banka, Zoltan (1)
Kladni, Laszlo (1)
Hasko, Tibor (1)
Szabo, Andras (1)
Bonta, Maximilian (1)
visa färre...
Lärosäte
Uppsala universitet (23)
Karolinska Institutet (12)
Språk
Engelska (23)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (15)
Naturvetenskap (7)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy