SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nilsson Ulrika) ;pers:(Melander Olle)"

Sökning: WFRF:(Nilsson Ulrika) > Melander Olle

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brunkwall, Louise, et al. (författare)
  • The Malmö Offspring Study (MOS) : design, methods and first results.
  • 2021
  • Ingår i: European Journal of Epidemiology. - : Springer Nature. - 0393-2990 .- 1573-7284. ; 36, s. 103-116
  • Tidskriftsartikel (refereegranskat)abstract
    • As cardio metabolic disease manifestations tend to cluster in families there is a need to better understand the underlying mechanisms in order to further develop preventive strategies. In fact, genetic markers used in genetic risk scores, important as they are, will not be able alone to explain these family clusters. Therefore, the search goes on for the so called missing heritability to better explain these associations. Shared lifestyle and social conditions in families, but also early life influences may be of importance. Gene-environmental interactions should be explored. In recent years interest has grown for the role of diet-microbiota associations, as microbiota patterns may be shared by family members. In the Malmö Offspring Study that started in 2013, we have so far been able to examine about 4700 subjects (18-71 years) representing children and grandchildren of index subjects from the first generation, examined in the Malmö Diet Cancer Study during 1991 to 1996. This will provide rich data and opportunities to analyse family traits of chronic disease across three generations. We will provide extensive genotyping and phenotyping including cardiovascular and respiratory function, as well as markers of glucose metabolism. In addition, also cognitive function will be assessed. A 4-day online dietary recall will be conducted and gut as well as oral microbiota analysed. The ambition is to provide one of the first large-scale European family studies with individual data across three generations, which could deepen our knowledge about the role of family traits for chronic disease and its underlying mechanisms.
  •  
2.
  •  
3.
  • Hellstrand, Sophie, et al. (författare)
  • Dietary Data in the Malmö Offspring Study : Reproducibility, Method Comparison and Validation against Objective Biomarkers
  • 2021
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 13:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Irregular dietary intakes impairs estimations from food records. Biomarkers and method combinations can be used to improve estimates. Our aim was to examine reproducibility from two assessment methods, compare them, and validate intakes against objective biomarkers. We used the Malmö Offspring Study (55% women, 18-71 y) with data from a 4-day food record (4DFR) and a short food frequency questionnaire (SFFQ) to compare (1) repeated intakes (n = 180), (2) intakes from 4DFR and SFFQ (n = 1601), and (3) intakes of fatty fish, fruits and vegetables, and citrus with plasma biomarkers (n = 1433) (3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid [CMPF], β-carotene and proline betaine). We also combined 4DFR and SFFQ estimates using principal component analysis (PCA). Moderate correlations were seen between repeated intakes (4DFR median ρ = 0.41, SFFQ median ρ = 0.59) although lower for specific 4DFR-items, especially fatty/lean fish (ρ ≤ 0.08). Between-method correlations (median ρ = 0.33) were higher for intakes of overall food groups compared to specific foods. PCA scores for citrus (proline betaine ρ = 0.53) and fruits and vegetables (β-carotene: ρ = 0.39) showed the highest biomarker correlations, whereas fatty fish intake from the SFFQ per se showed the highest correlation with CMPF (ρ = 0.46). To conclude, the reproducibility of SFFQ data was superior to 4DFR data regarding irregularly consumed foods. Method combination could slightly improve fruit and vegetable estimates, whereas SFFQ data gave most valid fatty fish intake.
  •  
4.
  • Ottosson, Filip, et al. (författare)
  • Connection between BMI-Related Plasma Metabolite Profile and Gut Microbiota
  • 2018
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 0021-972X .- 1945-7197. ; 103:4, s. 1491-1501
  • Tidskriftsartikel (refereegranskat)abstract
    • Context Emerging evidence has related the gut microbiome and circulating metabolites to human obesity. Gut microbiota is responsible for several metabolic functions, and altered plasma metabolome might reflect differences in the gut microbiome. Objective To identify a plasma metabolite profile associated with body mass index (BMI) in a general population and investigate whether such metabolite profile is associated with distinct composition of the gut microbiota. Design Targeted profiling of 48 plasma metabolites was performed in a population of 920 Swedish adults (mean age, 39 years; 53% women) from the ongoing Malmö Offspring Study using targeted liquid chromatography-mass spectrometry. Gut microbiota was analyzed by sequencing the 16S ribosomal RNA gene (V1-V3 region) in fecal samples of 674 study participants. Results BMI was associated with 19 metabolites (P < 0.001 for all), of which glutamate provided the strongest direct association (P = 5.2e-53). By orthogonal partial least squares regression, a metabolite principal component predictive of BMI was constructed (PC BMI). In addition to glutamate, PC BMI was dominated by branched-chain amino acids (BCAAs) and related metabolites. Four gut microbiota genera (Blautia, Dorea, Ruminococcus, and SHA-98) were associated with both BMI and PC BMI (P < 8.0e-4 for all). When simultaneously regressing PC BMI and metabolite-associated gut bacteria against BMI, only PC BMI remained statistically significant. Conclusions We discovered associations between four gut microbiota genera (Blautia, Dorea, Ruminococcus, and SHA-98) and BMI-predictive plasma metabolites, including glutamate and BCAAs. Thus, these metabolites could be mediators between gut microbiota and obesity, pointing to potential future opportunities for targeting the gut microbiota in prevention of obesity.
  •  
5.
  • Ottosson, Filip, et al. (författare)
  • Dimethylguanidino Valerate : A Lifestyle-Related Metabolite Associated With Future Coronary Artery Disease and Cardiovascular Mortality
  • 2019
  • Ingår i: Journal of the American Heart Association. - 2047-9980. ; 8:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Identification of lifestyle modifiable metabolic pathways related to cardiometabolic disease risk is essential for improvement of primary prevention in susceptible individuals. It was recently shown that plasma dimethylguanidino valerate (DMGV) levels are associated with incident type 2 diabetes mellitus. Our aims were to investigate whether plasma DMGV is related to risk of future coronary artery disease and with cardiovascular mortality and to replicate the association with type 2 diabetes mellitus and pinpoint candidate lifestyle interventions susceptible to modulate DMGV levels. Methods and Results Plasma DMGV levels were measured using liquid chromatography-mass spectrometry in a total of 5768 participants from the MDC (Malmö Diet and Cancer Study-Cardiovascular Cohort), MPP (Malmö Preventive Project), and MOS (Malmö Offspring Study). Dietary intake assessment was performed in the MOS. Baseline levels of DMGV associated with incident coronary artery disease in both the MDC (hazard ratio=1.29; CI=1.16-1.43; P<0.001) and MPP (odds ratio=1.25; CI=1.08-1.44; P=2.4e-3). In the MDC, DMGV was associated with cardiovascular mortality and incident coronary artery disease, independently of traditional risk factors. Furthermore, the association between DMGV and incident type 2 diabetes mellitus was replicated in both the MDC (hazard ratio=1.83; CI=1.63-2.05; P<0.001) and MPP (odds ratio=1.65; CI=1.38-1.98; P<0.001). Intake of sugar-sweetened beverages was associated with increased levels of DMGV, whereas intake of vegetables and level of physical activity was associated with lower DMGV. Conclusions We discovered novel independent associations between plasma DMGV and incident coronary artery disease and cardiovascular mortality, while replicating the previously reported association with incident type 2 diabetes mellitus. Additionally, strong associations with sugar-sweetened beverages, vegetable intake, and physical activity suggest the potential to modify DMGV levels using lifestyle interventions.
  •  
6.
  • Ottosson, Filip, et al. (författare)
  • Metabolome-Defined Obesity and the Risk of Future Type 2 Diabetes and Mortality
  • 2022
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 45:5, s. 1260-1267
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Obesity is a key risk factor for type 2 diabetes; however, up to 20% of patients are normal weight. Our aim was to identify metabolite patterns reproducibly predictive of BMI and subsequently to test whether lean individuals who carry an obese metabolome are at hidden high risk of obesity-related diseases, such as type 2 diabetes.RESEARCH DESIGN AND METHODS: Levels of 108 metabolites were measured in plasma samples of 7,663 individuals from two Swedish and one Italian population-based cohort. Ridge regression was used to predict BMI using the metabolites. Individuals with a predicted BMI either >5 kg/m2 higher (overestimated) or lower (underestimated) than their actual BMI were characterized as outliers and further investigated for obesity-related risk factors and future risk of type 2 diabetes and mortality.RESULTS: The metabolome could predict BMI in all cohorts (r2 = 0.48, 0.26, and 0.19). The overestimated group had a BMI similar to individuals correctly predicted as normal weight, had a similar waist circumference, were not more likely to change weight over time, but had a two times higher risk of future type 2 diabetes and an 80% increased risk of all-cause mortality. These associations remained after adjustments for obesity-related risk factors and lifestyle parameters.CONCLUSIONS: We found that lean individuals with an obesity-related metabolome have an increased risk for type 2 diabetes and all-cause mortality compared with lean individuals with a healthy metabolome. Metabolomics may be used to identify hidden high-risk individuals to initiate lifestyle and pharmacological interventions.
  •  
7.
  • Ottosson, Filip, et al. (författare)
  • Postprandial Levels of Branch Chained and Aromatic Amino Acids Associate with Fasting Glycaemia
  • 2016
  • Ingår i: Journal of Amino Acids. - : Hindawi Limited. - 2090-0104 .- 2090-0112. ; 2016
  • Tidskriftsartikel (refereegranskat)abstract
    • High fasting plasma concentrations of isoleucine, phenylalanine, and tyrosine have been associated with increased risk of hyperglycaemia and incidence of type 2 diabetes. Whether these associations are diet or metabolism driven is unknown. We examined how the dietary protein source affects the postprandial circulating profile of these three diabetes associated amino acids (DMAAs) and tested whether the postprandial DMAA profiles are associated with fasting glycaemia. We used a crossover design with twenty-one healthy individuals and four different isocaloric test meals, containing proteins from different dietary sources (dairy, fish, meat, and plants). Analysis of the postprandial DMAAs concentrations was performed using targeted mass spectrometry. A DMAA score was defined as the sum of all the three amino acid concentrations. The postprandial area under the curve (AUC) of all the three amino acids and the DMAA score was significantly greater after intake of the meal with dairy protein compared to intake of the three other meals. The postprandial AUC for the DMAA score and all the three amino acids strongly associated with fasting glucose level and insulin resistance. This indicates the importance of the postprandial kinetics and metabolism of DMAAs in understanding the overall association between DMAAs and glycaemia.
  •  
8.
  • Rukh, Gull, et al. (författare)
  • Inverse relationship between a genetic risk score of 31 BMI loci and weight change before and after reaching middle age
  • 2016
  • Ingår i: International Journal of Obesity. - : Springer Science and Business Media LLC. - 0307-0565 .- 1476-5497. ; 40:2, s. 252-259
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND/OBJECTIVE: Genome-wide-association studies have identified numerous body mass index (BMI)-associated variants, but it is unclear how these relate to weight gain in adults at different ages.METHODS: We examined the association of a genetic risk score (GRS), consisting of 31 BMI-associated variants, with an annual weight change (AWC) and a substantial weight gain (SWG) of 10% by comparing self-reported weight at 20 years (y) with baseline weight (mean: 58 y; s.d.: 8 y) in 21407 participants from the Malmö Diet and Cancer Study (MDCS), and comparing baseline weight to weight at follow-up (mean: 73 y; s.d.: 6 y) among 2673 participants. Association between GRS and AWG and SWG was replicated in 4327 GLACIER (Gene x Lifestyle interactions And Complex traits Involved in Elevated disease Risk) participants (mean: 45 y; s.d.: 7 y) with 10 y follow-up. Cohort-specific results were pooled by fixed-effect meta-analyses.RESULTS: In MDCS, the GRS was associated with increased AWC (β: 0.003; s.e: 0.01; P: 7 × 10(-8)) and increased odds for SWG (odds ratio (OR) 1.01 (95% confidence interval (CI): 1.00, 1.02); P: 0.013) per risk-allele from age 20y, but unexpectedly with decreased AWC (β: -0.006; s.e: 0.002; P: 0.009) and decreased odds for SWG OR 0.96 (95% CI: 0.93, 0.98); P: 0.001) between baseline and follow-up. Effect estimates from age 20 y to baseline differed significantly from those from baseline to follow-up (P: 0.0002 for AWC and P: 0.0001 for SWG). Similar to MDCS, the GRS was associated with decreased odds for SWG OR 0.98 (95% CI: 0.96, 1.00); P: 0.029) from baseline to follow-up in GLACIER. In meta-analyses (n=7000), the GRS was associated with decreased AWC (β: -0.005; s.e.m. 0.002; P: 0.002) and decreased odds for SWG OR 0.97 (95% CI: 0.96, 0.99); P: 0.001) per risk-allele.CONCLUSIONS: Our results provide convincing evidence for a paradoxical inversed relationship between a high number of BMI-associated risk-alleles and less weight gain during and after middle-age, in contrast to the expected increased weight gain seen in younger age.
  •  
9.
  • Schulz, Christina-Alexandra, et al. (författare)
  • High Level of Fasting Plasma Proenkephalin-A Predicts Deterioration of Kidney Function and Incidence of CKD
  • 2017
  • Ingår i: Journal of the American Society of Nephrology: JASN. - 1046-6673. ; 28:1, s. 291-303
  • Tidskriftsartikel (refereegranskat)abstract
    • High levels of proenkephalin-A (pro-ENK) have been associated with decreased eGFR in an acute setting. Here, we examined whether pro-ENK levels predict CKD and decline of renal function in a prospective cohort of 2568 participants without CKD (eGFR>60 ml/min per 1.73 m2) at baseline. During a mean follow-up of 16.6 years, 31.7% of participants developed CKD. Participants with baseline pro-ENK levels in the highest tertile had significantly greater yearly mean decline of eGFR (Ptrend<0.001) and rise of cystatin C (Ptrend=0.01) and creatinine (Ptrend<0.001) levels. Furthermore, compared with participants in the lowest tertile, participants in the highest tertile of baseline pro-ENK concentration had increased CKD incidence (odds ratio, 1.51; 95% confidence interval, 1.18 to 1.94) when adjusted for multiple factors. Adding pro-ENK to a model of conventional risk factors in net reclassification improvement analysis resulted in reclassification of 14.14% of participants. Genome-wide association analysis in 4150 participants of the same cohort revealed the strongest association of pro-ENK levels with rs1012178 near the PENK gene, where the minor T-allele associated with a 0.057 pmol/L higher pro-ENK level per allele (P=4.67x10-21). Furthermore, the T-allele associated with a 19% increased risk of CKD per allele (P=0.03) and a significant decrease in the instrumental variable estimator for eGFR (P<0.01) in a Mendelian randomization analysis. In conclusion, circulating plasma pro-ENK level predicts incident CKD and may aid in identifying subjects in need of primary preventive regimens. Additionally, the Mendelian randomization analysis suggests a causal relationship between pro-ENK level and deterioration of kidney function over time.
  •  
10.
  • Smith, Einar, et al. (författare)
  • A healthy dietary metabolic signature is associated with a lower risk for type 2 diabetes and coronary artery disease
  • 2022
  • Ingår i: BMC Medicine. - : Springer Science and Business Media LLC. - 1741-7015. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The global burden of cardiovascular disease and type 2 diabetes could be decreased by improving dietary factors, but identification of groups suitable for interventional approaches can be difficult. Reporting of dietary intake is prone to errors, and measuring of metabolites has shown promise in determining habitual dietary intake. Our aim is to create a metabolic signature that is associated with healthy eating and test if it associates with type 2 diabetes and coronary artery disease risk. Methods: Using plasma metabolite data consisting of 111 metabolites, partial least square (PLS) regression was used to identify a metabolic signature associated with a health conscious food pattern in the Malmö Offspring Study (MOS, n = 1538). The metabolic signature’s association with dietary intake was validated in the Malmö Diet and Cancer study (MDC, n = 2521). The associations between the diet-associated metabolic signature and incident type 2 diabetes and coronary artery disease (CAD) were tested using Cox regression in MDC and logistic regression in Malmö Preventive Project (MPP, n = 1083). Modelling was conducted unadjusted (model 1), adjusted for potential confounders (model 2) and additionally for potential mediators (model 3). Results: The metabolic signature was associated with lower risk for type 2 diabetes in both MDC (hazard ratio: 0.58, 95% CI 0.52–0.66, per 1 SD increment of the metabolic signature) and MPP (odds ratio: 0.54, 95% CI 0.44–0.65 per 1 SD increment of the metabolic signature) in model 2. The results were attenuated but remained significant in model 3 in both MDC (hazard ratio 0.73, 95% CI 0.63–0.83) and MPP (odds ratio 0.70, 95% CI 0.55–0.88). The diet-associated metabolic signature was also inversely associated with lower risk of CAD in both MDC and MPP in model 1, but the association was non-significant in model 3. Conclusions: In this proof-of-concept study, we identified a healthy diet-associated metabolic signature, which was inversely associated with future risk for type 2 diabetes and coronary artery disease in two different cohorts. The association with diabetes was independent of traditional risk factors and might illustrate an effect of health conscious dietary intake on cardiometabolic health.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy