SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nilsson Ulrika) ;pers:(Ottander Ulrika)"

Sökning: WFRF:(Nilsson Ulrika) > Ottander Ulrika

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Vinnars, Marie-Therese, et al. (författare)
  • Enhanced Th1 and inflammatory mRNA responses upregulate NK cell cytotoxicity and NKG2D ligand expression in human pre-eclamptic placenta and target it for NK cell attack
  • 2018
  • Ingår i: American Journal of Reproductive Immunology. - : Wiley. - 1046-7408 .- 1600-0897. ; 80:1
  • Tidskriftsartikel (refereegranskat)abstract
    • ProblemPre-eclampsia (PE), a severe human pregnancy disorder, is associated with exaggerated systemic inflammation, enhanced cytokine production, and increased shedding of microvesicles leading to endothelial dysfunction, coagulopathy, and extensive placenta destruction. The cause of PE is still unclear. Evidence suggests that its origin lies in the placenta and that the maternal immune system is involved. A shift in cytokine production in PE pregnancy promotes NK cell activation, suggested to be important in PE pathogenesis. In line with this suggestion, we studied NK cell cytotoxicity in peripheral blood of PE patients and controls and the mRNA expression of cytokines and of the NKG2D receptor and its ligands MICA/B and ULBP1-3 in PE- and normal placenta. Method of studyThe cytotoxic capacity of peripheral blood NK cells was analyzed using K562 target cells. The cytokine mRNA profiles and the mRNA expression of the NKG2D receptor and its ligands MICA/B and ULBP 1-3 in PE placenta were assessed and compared to those in normal placenta using real-time quantitative RT-PCR. ResultsThe cytotoxicity of peripheral blood NK cells was upregulated in PE cases. Further, we found an enhanced inflammatory cytokine mRNA response combined with a dysregulated regulatory response and a significant mRNA overexpression of NKG2D receptor and its ligands MICA/B and ULBP in PE placenta. ConclusionThe destruction of chorionic villi observed in PE placenta might be conveyed by an enhanced local cytotoxic response through the NKG2D receptor-ligand pathway, which in turn might be promoted by an intense inflammatory response not counteracted by regulatory cytokine responses.
  •  
2.
  • Björk, Emma, 1977-, et al. (författare)
  • Endometriotic tissue-derived exosomes downregulate NKg2D-mediated cytotoxicity and promote apoptosis : mechanisms for survival of ectopic endometrial tissue in endometriosis
  • 2024
  • Ingår i: Journal of Immunology. - : The American Association of Immunologists. - 0022-1767 .- 1550-6606. ; 213:5, s. 567-576
  • Tidskriftsartikel (refereegranskat)abstract
    • Endometriosis, affecting 10% of women, is defined as implantation, survival, and growth of endometrium-like/endometriotic tissue outside the uterine cavity, causing inflammation, infertility, pain, and susceptibility to ovarian cancer. Despite extensive studies, its etiology and pathogenesis are poorly understood and largely unknown. The prevailing view is that the immune system of endometriosis patients fails to clear ectopically disseminated endometrium from retrograde menstruation. Exosomes are small extracellular vesicles that exhibit immunomodulatory properties. We studied the role of endometriotic tissue-secreted exosomes in the pathophysiology of endometriosis. Two exosome-mediated mechanisms known to impair the immune response were investigated: 1) downregulation of NKG2D-mediated cytotoxicity and 2) FasL- and TRAIL-induced apoptosis of activated immune cells. We showed that secreted endometriotic exosomes isolated from supernatants of short-term explant cultures carry the NKG2D ligands MICA/B and ULBP1-3 and the proapoptotic molecules FasL and TRAIL on their surface, i.e., signature molecules of exosome-mediated immune suppression. Acting as decoys, these exosomes downregulate the NKG2D receptor, impair NKG2D-mediated cytotoxicity, and induce apoptosis of activated PBMCs and Jurkat cells through the FasL- and TRAIL pathway. The secreted endometriotic exosomes create an immunosuppressive gradient at the ectopic site, forming a “protective shield” around the endometriotic lesions. This gradient guards the endometriotic lesions against clearance by a cytotoxic attack and creates immunologic privilege by induction of apoptosis in activated immune cells. Taken together, our results provide a plausible, exosome-based mechanistic explanation for the immune dysfunction and the compromised immune surveillance in endometriosis and contribute novel insights into the pathogenesis of this enigmatic disease.
  •  
3.
  • Björk, Emma, et al. (författare)
  • Enhanced CD56 expression and increased numbers of CD56+bright cells in the peripheral blood of untreated endometriosis patients
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Problem: Endometriosis is characterized by ectopic implantation of endometrial-like tissue and impaired immuneresponses such as the cytotoxic function of NK cells. NK cells can be divided into two subpopulations where theCD56+bright cells produce more cytokines and have low natural cytotoxicity compared to CD56+dim cells. Themajority (>90%) of circulating NK cells are CD56+dim whereas very few (0-10 %) are CD56+bright.Method of Study: Using flow cytometry, NK cell subpopulations were analyzed in peripheral blood from 21individuals with endometriosis and 12 healthy controls. Furthermore, the NKG2D receptor expression on PBMCswas analyzed in untreated and treated endometriosis patients and controls.Results: We found an increased level of CD56+bright cells in 8 of 21 endometriosis patients. After surgery andhormonal treatment, the levels were normalized to that of controls. In a new cohort, the NKG2D receptorexpression on PBMCs was analyzed, with a lower expression in untreated patients compared to controls andpatients treated by surgery and hormones.Conclusions: Our findings of a dominant CD56+bright NK cell subpopulation in peripheral blood, anddownregulated levels of the NKG2D receptor on PBMCs, may explain the impaired cytotoxic immune functioncausing the persistence of ectopic endometrium in untreated endometriosis patients.
  •  
4.
  • Björk, Emma, et al. (författare)
  • Enhanced local and systemic inflammatory cytokine mRNA expression in women with endometriosis evokes compensatory adaptive regulatory mRNA response that mediates immune suppression and impairs cytotoxicity
  • 2020
  • Ingår i: American Journal of Reproductive Immunology. - : John Wiley & Sons. - 1046-7408 .- 1600-0897. ; 84:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Problem: Endometriosis is a disease characterized by ectopic implantation of endometrium and impaired immune responses. To explore its pathogenic mechanisms, we studied the local and systemic cytokine mRNA profiles and their role in the immunity of patients with endometriosis and healthy controls.Method of Study: mRNA for eleven cytokines defining cytotoxic Th1, humoral Th2, regulatory Tr1/Th3, and inflammatory cytokine profiles was characterized locally in endometriotic tissue and endometrium, and systemically in PBMCs from women with endometriosis and healthy controls, using real‐time qRT‐PCR. In addition, immunohistochemical stainings with monoclonal antibodies were performed looking for T regulatory cells in endometriotic lesions.Results: We found a downregulation of mRNA for cytokines mediating cytotoxicity and antibody response and an upregulation of inflammatory and T‐regulatory cytokines in the endometriotic tissues and endometrium from the patients with endometriosis, suggesting enhanced local inflammation and priming of an adaptive regulatory response. Consistent with those findings, there was an abundancy of T regulatory cells in the endometriotic lesions.Conclusions: The ectopic implantation seen in endometriosis could be possible as a consequence of increased inflammation and priming of adaptive T regulatory cells, resulting in impaired cytotoxicity and enhanced immune suppression.
  •  
5.
  • Björk, Emma, 1977- (författare)
  • Immunosuppressive mechanisms in endometriosis : a focus on the role of exosomes
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Endometriosis is defined as the presence of endometrial-like tissue outside the uterine cavity. It has been suggested that the aberrant immunological mechanisms that cause dysfunction of immune cells and mediators are involved in the pathogenesis of endometriosis. There is substantial evidence of downregulated NK cell cytotoxicity and changes in inflammatory mediators such as cytokines in endometriosis. This research aimed to elucidate the immunosuppressive mechanisms in endometriosis, focusing on NK cells, the role of cytokines, and exosomes derived from endometriotic tissue.Cytokines are small peptides/proteins used for intercellular communication, and regulate immune-effector functions in health and disease. In Paper I, real-time RT-qPCR and a set of primers and probes for 11 cytokines were used defining cytotoxic Th1, humoral Th2, regulatory Tr1/Th3, and inflammatory cytokine profiles. Cytokine mRNA expression in endometriotic tissue was compared with endometrium, and systemically with peripheral blood mononuclear cells (PBMC) from women with endometriosis and healthy controls. In addition, immunohistochemical staining with monoclonal antibodies was performed to investigate T-regulatory cells in endometriotic lesions. A downregulation of mRNA for cytokines that mediate cytotoxicity and antibody response was found in the endometriotic lesions. At the same time, there was an upregulation of inflammatory and T-regulatory cytokines in the endometriotic lesions, suggesting enhanced local inflammation and priming of an adaptive regulatory response. Consistent with these findings, T-­regulatory cells were abundant in the endometriotic lesions. These findings suggest that the ectopic implantation seen in endometriosis may be a consequence of increased inflammation and priming of adaptive T regulatory cells, resulting in impaired cytotoxicity and enhanced immune suppression. Exosomes are nanometer-sized extracellular vesicles of endosomal origin; they are produced by most cells in the body, convey intercellular communication and participate in both normal and pathological processes. Paper II show that endometriotic lesions produce high amounts of exosomes. The exosomes expressed on their surfaces the NKG2D ligands MICA/B and ULBP1-3 and the proapoptotic molecules FasL and TRAIL. These molecules are known as immunosuppressive signatures. Functional experiments were performed to show that these exosomes can downregulate the main activating NK receptor NKG2D on CTL and NK cells, reduce the killing ability of PBMC from healthy donors, and induce apoptosis of activated lymphocytes through the FasL/Fas pathway. The production and secretion of exosomes from the endometriotic tissue may be further enhanced by the vigorous local inflammation at ectopic sites. The results show that endometriotic lesions secrete immunosuppressive exosomes that inhibit cytotoxicity and promote apoptosis of activated immune cells. The exosomes form a “protective shield” around the endometriotic tissue thus promoting their survival.NK cells are cytotoxic cells of the innate immune system. Human NK cells can be divided into two subsets: CD56+bright and CD56+dim. The CD56+dim subset is more naturally cytotoxic, whereas the CD56+bright subset produces more cytokines, but has low natural cytotoxicity. The majority (>90%) of circulating NK cells are CD56+dim, whereas very few (0-10 %) are CD56+bright. In Paper III a higher amount of CD56+bright cells in serum was observed in one third of endometriosis patients compared to healthy controls. The amount of these cells was normalized after treatment with surgery, with or without medical treatment. Untreated patients had a lower expression of NKG2D receptors on their NK cells and CTLs compared to treated patients and healthy controls, which could be due to endometriotic exosomes carrying the NKG2D ligands that downregulate the receptor. Thus, surgery might have a beneficial effect on cytotoxic NK-cell function in endometriosis.Endometriosis is considered a benign disease; however it has many features in common with tumors, and shares multiple microenvironmental hallmarks with cancer, including angiogenesis, immune dysregulation, inflammation, invasion, and metastasis. Paper II shows that endometriotic tissue secretes immunosuppressive exosomes. In Paper IV, exosomes in the peripheral blood of epithelial ovarian cancer (EOC) patients, and the impairment of the NKG2D receptor-ligand system in vivo before and after surgery, were studied. The serum exosomes isolated from the EOC patients carried the NKG2D ligands MICA/B and ULBP1-3. In functional experiments, the EOC exosomes downregulated the expression of the NKG2D receptor, and subdued NKG2D-­mediated cytotoxicity in NK cells from healthy donors in a similar manner to the endometriotic exosomes studied in Paper II. In Paper IV, surgery of the primary EOC tumor had a beneficial effect, alleviating the exosome-mediated suppression of NKG2D-mediated cytotoxicity. Thus, exosome-mediated immunosuppression is revealed as a common mechanism of action for immune escape in endometriosis and cancer. The results presented in this thesis provide novel and important insights into the function of the immune system in endometriosis, and give new explanations for why ectopic endometrial tissue persists and proliferates outside the uterine cavity. Furthermore, the immunosuppression in the microenvironment of endometriosis, which has many similarities with the local tumor microenvironment (TME), was investigated with a focus on the role of endometriotic exosomes. Taken together, this thesis contributes to understanding of the pathogenesis of endometriosis, and might be useful in identifying biomarkers for endometriosis and developing new immuno­modulatory therapies.
  •  
6.
  • Israelsson, Pernilla, et al. (författare)
  • Assessment of cytokine mRNA expression profiles in tumor microenvironment and peripheral blood mononuclear cells of patients with high-grade serous carcinoma of the ovary
  • 2017
  • Ingår i: Journal of Cancer Science & Therapy. - : OMICS Publishing Group. - 1948-5956. ; 9:5, s. 422-429
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Tumor establishment, metastatic spreading and poor survival in ovarian cancer is strongly associated with progressive derangement of the patient’s immune system. Accumulating evidence suggests that immune impairment is influenced by the production and presence of cytokines in the tumor microenvironment. Methods: Cytokine mRNA profiles in tumor tissue and peripheral blood mononuclear cells (PBMC) were analyzed in patients with high grade serous carcinoma (HGSC) of the ovary and compared it to patients with benign ovarian conditions and controls with normal ovaries. Cytokine assessment was done by real-time quantitative RT-PCR and specific primers and probes for 12 cytokines-IFN-γ, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-15, TNF-α, TNF-β/LTA, TGF-β1, and GM-CSF chosen to distinguish between cytotoxic Th1, humoral Th2, regulatory Th3/Tr1 and inflammatory responses. Results: The cytokine mRNA response in the HGSC patients was significantly up regulated compared to patients with benign ovarian conditions and normal ovary controls confirming the immunogenicity of HGSC and implying immune recognition and reaction locally in the tumor microenvironment and systemically in the peripheral blood.There was an up-regulation of inflammatory and inhibitory cytokine mRNA promoting tumor progression, T-regulatory cell priming and T-regulatory cell-mediated immune suppression. In contrast, there was an inability to mount the crucially important IFN gamma response needed for upregulation of the cytotoxic anti-tumor response in the local microenvironment. In addition, systemic IL-4- mediated Th2 response prevailed in the peripheral blood deviating the systemic defense towards humoral immunity. Conclusions: Taken together, these results suggest local and systemic cytokine cooperation promoting tumor survival, progression and immune escape. Our study confirms and extends previous investigations and contributes to the evaluation of potential cytokine candidates for diagnostic cytokine mRNA profiles and for future therapeutic interventions based on cytokine inhibition.
  •  
7.
  • Israelsson, Pernilla, et al. (författare)
  • Assessment of cytokine mRNA expression profiles in tumor microenvironment and peripheral blood mononuclear cells of patients with high-grade serous carcinoma of the ovary
  • 2019
  • Ingår i: International Journal of Gynecological Cancer. - : BMJ Publishing Group Ltd. - 1048-891X .- 1525-1438. ; 29, s. A138-A138
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Introduction/Background Tumor establishment, metastatic spreading and poor survival in ovarian cancer is strongly associated with progressive derangement of the patient‘s immune system. Accumulating evidence suggests that immune impairment is influenced by the production and presence of cytokines in the tumor microenvironment.Methodology Cytokine mRNA profiles in tumor tissue and peripheral blood mononuclear cells (PBMC) were analyzed in patients with high grade serous carcinoma (HGSC) of the ovary and compared it to patients with benign ovarian conditions and controls with normal ovaries. Cytokine assessment was done by real-time quantitative RT-PCR and specific primers and probes for 12 cytokines-IFN-γ, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-15, TNF-α, TNF-β/LTA, TGF-β1, and GM-CSF chosen to distinguish between cytotoxic Th1, humoral Th2, regulatory Th3/Tr1 and inflammatory responses.Results The cytokine mRNA response in the HGSC patients was significantly up regulated compared to patients with benign ovarian conditions and normal ovary controls confirming the immunogenicity of HGSC and implying immune recognition and reaction locally in the tumor microenvironment and systemically in the peripheral blood.There was an up-regulation of inflammatory and inhibitory cytokine mRNA promoting tumor progression, T-regulatory cell priming and T-regulatory cell-mediated immune suppression. In contrast, there was an inability to mount the crucially important IFN gamma response needed for upregulation of the cytotoxic anti-tumor response in the local microenvironment. In addition, systemic IL-4- mediated Th2 response prevailed in the peripheral blood deviating the systemic defense towards humoral immunity.Conclusion Taken together, these results suggest local and systemic cytokine cooperation promoting tumor survival, progression and immune escape. Our study confirms and extends previous investigations and contributes to the evaluation of potential cytokine candidates for diagnostic cytokine mRNA profiles and for future therapeutic interventions based on cytokine inhibition.
  •  
8.
  • Israelsson, Pernilla, et al. (författare)
  • Cytokine mRNA and protein expression by cell cultures of epithelial ovarian cancer : Methodological considerations on the choice of analytical method for cytokine analyses
  • 2020
  • Ingår i: American Journal of Reproductive Immunology. - : John Wiley & Sons. - 1046-7408 .- 1600-0897. ; 84:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Problem: To get a comprehensive picture of cytokine expression in health and disease is difficult, cytokines are transiently and locally expressed, and protein analyses are burdened by biological modifications, technical issues, and sensitivity to handling of samples. Thus, alternative methods, based on molecular techniques for cytokine mRNA analyses, are often used. We compared cytokine mRNA and protein expression to evaluate whether cytokine mRNA profiles can be used instead of protein analyses.Method of study: In kinetic experiments, cytokine mRNA and protein expression of IL-1 beta, IL-6, IL-8, TNF-alpha, and TNF-beta/LTA were studied using real-time RT-qPCR and Luminex(R) microarrays in the ovarian cancer cell lines OVCAR-3, SKOV-3 and the T-cell line Jurkat, after activation of transcription by thermal stress. In addition, we analyzed IL-6 and IL-8 mRNA and protein in a small number of ovarian cancer patients.Results: Ovarian cancer cells can express cytokines on both mRNA and protein level, with 1-4 hours' time delay between the mRNA and protein peak and a negative Spearman correlation. The mRNA and protein expression in patient samples was poorly correlated, reflecting previous studies.Conclusion: Cytokine mRNA and protein expression levels show diverging results, depending on the material analyzed and the method used. Considering the high sensitivity and reproducibility of real-time RT-qPCR, we suggest that cytokine mRNA profiles could be used as a proxy for protein expression for some specific purposes, such as comparisons between different patient groups, and in defining mechanistic pathways involved in the pathogenesis of cancer and other pathological conditions.
  •  
9.
  • Israelsson, Pernilla, 1984- (författare)
  • Mechanisms for immune escape in epithelial ovarian cancer
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Tumors develop mechanisms to subvert the immune system, constituting immune escape. Epithelial ovarian cancer (EOC), the deadliest of all gynecological malignancies, uses a variety of mechanisms to undermine immune surveillance, aiding its establishment and metastatic spreading. Despite progress in oncoimmunology, a lot remains unknown about the cancer-immune system interplay. The aim of this thesis was to study tumor-mediated mechanisms for immune escape in EOC patients, focusing on the role of cytokines and EOC- derived exosomes. Cytokines are key molecules regulating immune effector functions in health and disease. We used real-time RT-qPCR and a set of primers and probes for 12 cytokines, discriminating between different immune responses and compared the cytokine mRNA expression profiles locally in the TME and systemically in peripheral blood immune cells of EOC patients, to women with benign ovarian conditions and women with normal ovaries. The cytokine mRNA expression was in general most prominent in EOC patients, confirming the immunogenicity of EOC. We found significant dominance of inflammatory and immunosuppressive/ regulatory cytokines, known to promote tumor progression by priming and activating T regulatory cell-mediated immune suppression. In contrast, IFN-γ, crucially important for evoking a cytotoxic anti-tumor response, was not upregulated. Instead, a systemic increase of IL-4 prevailed, deviating the immune defense towards humoral immunity. With regard to our cytokine study, we performed comparative analyses of cytokine mRNA versus protein expression in the EOC cell lines OVCAR-3 and SKOV-3. We found that cytokine mRNA signals were universally detected, and in some instances translated into proteins, but the protein expression levels depended on the material analyzed and the method used. Due to the high sensitivity of real-time RT-qPCR, we suggest that cytokine mRNA expression profiles can be used for some instances, such as in studies of mechanistic pathways and in comparisons between patient groups, but cannot replace expression at the protein level. Exosomes are nanometer-sized vesicles of endosomal origin, released by virtually all cells, participating in normal and pathological processes. Like many tumors, EOC is a great exosome producer. We isolated exosomes from EOC ascitic fluid and supernatant from tumor explant cultures to study their effect on the NK cell receptors NKG2D and DNAM-1, involved in tumor killing. We found that EOC exosomes constitutively expressed NKG2D ligands on their surface while DNAM-1 ligand expression was rare and not associated with the exosomal membrane. Consistently, the major cytotoxic pathway of NKG2D-mediated killing was dysregulated by EOC exosomes while the accessory DNAM-1- mediated pathway remained unchanged. Our results provide a mechanistic explanation to the previously made observation that in EOC patients, tumor killing is only dependent on the accessory DNAM-1 pathway. Following these iii iv results, we studied NKG2D-mediated cytotoxicity in vivo in EOC patients before and after surgery. We found that the serum exosomes isolated from EOC patients were able to downregulate the NKG2D receptor and suppress NKG2D-mediated cytotoxicity in NK cells from healthy donors, in a similar way as exosomes from EOC ascites. We also found that surgery of the primary EOC tumor has a beneficial effect on the patients’ anti-tumor cytotoxic immune response. One mechanistic explanation could be a decrease in circulating NKG2D ligand- expressing exosomes, thus improving the cytotoxic NK cell function. In conclusion, our results contribute to the understanding of the mechanisms responsible for tumor immune escape in general, and in EOC patients in particular, and might be useful in developing novel antitumor therapies. Our studies highlight the prevailing immunosuppression in the local TME and the immunosuppressive role of EOC exosomes. Furthermore, they support the notion that cancer surgery is also a way of removing exosome-producing cells and reducing the serum concentration of immunosuppressive exosomes, thus boosting the patients’ cytotoxic anti-tumor response. 
  •  
10.
  • Israelsson, Pernilla, et al. (författare)
  • NKG2D-mediated cytotoxicity improves after primary surgery for high-grade serous ovarian cancer
  • 2023
  • Ingår i: American Journal of Reproductive Immunology. - : John Wiley & Sons. - 1046-7408 .- 1600-0897. ; 89:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Problem: Tumors compromise the patients’ immune system to promote their own survival. We have previously reported that HGSC exosomes play a central role, downregulating NKG2D cytotoxicity. Primary surgery's effect on tumor exosomes and NKG2D cytotoxicity in HGSC patients has not been studied before. The overall objective of this study was to explore the effect of surgery on the exosome-induced impairment of NKG2D cytotoxicity in HGSC.Method of study: Paired pre- and post-operative blood samples were subjected to cell and exosome analyses regarding the NKG2D receptor and ligands, and NKG2D-mediated cytotoxicity. Lymphocytes were phenotyped by immunoflow cytometry. Exosomes, isolated by ultracentrifugation, and characterized by nanoparticle tracking analysis, transmission and immune electron microscopy and western blot were used in functional cytotoxic experiments. HGSC explant culture-derived exosomes, previously studied by us, were used for comparison.Results: HGSC exosomes from patients’ sera downregulated NKG2D-mediated cytotoxicity in NK cells of healthy donors. In a subgroup of subjects, NKG2D expression on CTLs and NK cells was upregulated after surgery, correlating to a decrease in the concentration of exosomes in postoperative sera. An overall significantly improved NKG2D-mediated cytotoxic response of the HGSC patients’ own NK cells in postoperative compared to preoperative samples was noted.Conclusions: Surgical removal of the primary tumor has a beneficial effect, relieving the exosome-mediated suppression of NKG2D cytotoxicity in HGSC patients, thus boostering their ability to combat cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy