SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nordberg Agneta) ;mspu:(researchreview)"

Sökning: WFRF:(Nordberg Agneta) > Forskningsöversikt

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bischof, Gérard N., et al. (författare)
  • Clinical validity of second-generation tau PET tracers as biomarkers for Alzheimer’s disease in the context of a structured 5-phase development framework
  • 2021
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 48:7, s. 2110-2120
  • Forskningsöversikt (refereegranskat)abstract
    • Purpose: In 2017, the Geneva Alzheimer’s disease (AD) strategic biomarker roadmap initiative proposed a framework of the systematic validation AD biomarkers to harmonize and accelerate their development and implementation in clinical practice. Here, we use this framework to examine the translatability of the second-generation tau PET tracers into the clinical context. Methods: All available literature was systematically searched based on a set of search terms that related independently to analytic validity (phases 1–2), clinical validity (phase 3–4), and clinical utility (phase 5). The progress on each of the phases was determined based on scientific criteria applied for each phase and coded as fully, partially, preliminary achieved or not achieved at all. Results: The validation of the second-generation tau PET tracers has successfully passed the analytical phase 1 of the strategic biomarker roadmap. Assay definition studies showed evidence on the superiority over first-generation tau PET tracers in terms of off-target binding. Studies have partially achieved the primary aim of the analytical validity stage (phase 2), and preliminary evidence has been provided for the assessment of covariates on PET signal retention. Studies investigating of the clinical validity in phases 3, 4, and 5 are still underway. Conclusion: The current literature provides overall preliminary evidence on the establishment of the second-generation tau PET tracers into the clinical context, thereby successfully addressing some methodological issues from the tau PET tracer of the first generation. Nevertheless, bigger cohort studies, longitudinal follow-up, and examination of diverse disease population are still needed to gauge their clinical validity.
  •  
2.
  • Chiotis, Konstantinos, et al. (författare)
  • Clinical validity of increased cortical binding of tau ligands of the THK family and PBB3 on PET as biomarkers for Alzheimer’s disease in the context of a structured 5-phase development framework
  • 2021
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 48:7, s. 2086-2096
  • Forskningsöversikt (refereegranskat)abstract
    • Purpose: The research community has focused on defining reliable biomarkers for the early detection of the pathological hallmarks of Alzheimer’s disease (AD). In 2017, the Geneva AD Biomarker Roadmap initiative adapted the framework for the systematic validation of oncological biomarkers to AD, with the aim to accelerate their development and implementation in clinical practice. The aim of this work was to assess the validation status of tau PET ligands of the THK family and PBB3 as imaging biomarkers for AD, based on the Biomarker Roadmap methodology. Methods: A panel of experts in AD biomarkers convened in November 2019 at a 2-day workshop in Geneva. The level of clinical validity of tau PET ligands of the THK family and PBB3 was assessed based on the 5-phase development framework before the meeting and discussed during the workshop. Results: PET radioligands of the THK family discriminate well between healthy controls and patients with AD dementia (phase 2; partly achieved) and recent evidence suggests an accurate diagnostic accuracy at the mild cognitive impairment (MCI) stage of the disease (phase 3; partly achieved). The phases 2 and 3 were considered not achieved for PBB3 since no evidence exists about the ligand’s diagnostic accuracy. Preliminary evidence exists about the secondary aims of each phase for all ligands. Conclusion: Much work remains for completing the aims of phases 2 and 3 and replicating the available evidence. However, it is unlikely that the validation process for these tracers will be completed, given the presence of off-target binding and the development of second-generation tracers with improved binding and pharmacokinetic properties.
  •  
3.
  • Dubois, Bruno, et al. (författare)
  • Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria.
  • 2014
  • Ingår i: Lancet neurology. - 1474-4465. ; 13:6, s. 614-29
  • Forskningsöversikt (refereegranskat)abstract
    • In the past 8 years, both the International Working Group (IWG) and the US National Institute on Aging-Alzheimer's Association have contributed criteria for the diagnosis of Alzheimer's disease (AD) that better define clinical phenotypes and integrate biomarkers into the diagnostic process, covering the full staging of the disease. This Position Paper considers the strengths and limitations of the IWG research diagnostic criteria and proposes advances to improve the diagnostic framework. On the basis of these refinements, the diagnosis of AD can be simplified, requiring the presence of an appropriate clinical AD phenotype (typical or atypical) and a pathophysiological biomarker consistent with the presence of Alzheimer's pathology. We propose that downstream topographical biomarkers of the disease, such as volumetric MRI and fluorodeoxyglucose PET, might better serve in the measurement and monitoring of the course of disease. This paper also elaborates on the specific diagnostic criteria for atypical forms of AD, for mixed AD, and for the preclinical states of AD.
  •  
4.
  • Hampel, Harald, et al. (författare)
  • Biomarkers for Alzheimer's disease therapeutic trials.
  • 2011
  • Ingår i: Progress in neurobiology. - : Elsevier BV. - 1873-5118 .- 0301-0082. ; 95:4
  • Forskningsöversikt (refereegranskat)abstract
    • The development of disease-modifying treatments for Alzheimer's disease requires innovative trials with large numbers of subjects and long observation periods. The use of blood, cerebrospinal fluid or neuroimaging biomarkers is critical for the demonstration of disease-modifying therapy effects on the brain. Suitable biomarkers are those which reflect the progression of AD related molecular mechanisms and neuropathology, including amyloidogenic processing and aggregation, hyperphosphorylation, accumulation of tau and neurofibrillary tangles, progressive functional, metabolic and structural decline, leading to neurodegeneration, loss of brain tissue and cognitive symptoms. Biomarkers should be used throughout clinical trial phases I-III of AD drug development. They can be used to enhance inclusion and exclusion criteria, or as baseline predictors to increase the statistical power of trials. Validated and qualified biomarkers may be used as outcome measures to detect treatment effects in pivotal clinical trials. Finally, biomarkers can be used to identify adverse effects. Questions regarding which biomarkers should be used in clinical trials, and how, are currently far from resolved. The Oxford Task Force continues and expands the work of our previous international expert task forces on disease-modifying trials and on endpoints for Alzheimer's disease clinical trials. The aim of this initiative was to bring together a selected number of key international opinion leaders and experts from academia, regulatory agencies and industry to condense the current knowledge and state of the art regarding the best use of biological markers in Alzheimer's disease therapy trials and to propose practical recommendations for the planning of future AD trials.
  •  
5.
  • Heurling, Kerstin, et al. (författare)
  • Imaging β-amyloid using [(18)F]flutemetamol positron emission tomography : from dosimetry to clinical diagnosis
  • 2016
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 43:2, s. 362-373
  • Forskningsöversikt (refereegranskat)abstract
    • In Alzheimer's disease (AD), the deposition of β-amyloid (Aβ) is hypothesized to result in a series of secondary neurodegenerative processes, leading ultimately to synaptic dysfunction and neuronal loss. Since the advent of the first Aβ-specific positron emission tomography (PET) ligand, (11)C-Pittsburgh compound B ([(11)C]PIB), several (18)F ligands have been developed that circumvent the limitations of [(11)C]PIB tied to its short half-life. To date, three such compounds have been approved for clinical use by the US and European regulatory bodies, including [(18)F]AV-45 ([(18)F]florbetapir; Amyvid™), [(18)F]-BAY94-9172 ([(18)F]florbetaben; Neuraceq™) and [(18)F]3'-F-PIB ([(18)F]flutemetamol; Vizamyl™). The present review aims to summarize and discuss the currently available knowledge on [(18)F]flutemetamol PET. As the (18)F analogue of [(11)C]PIB, [(18)F]flutemetamol may be of use in the differentiation of AD from related neurodegenerative disorders and may help with subject selection and measurement of target engagement in the context of clinical trials testing anti-amyloid therapeutics. We will also discuss its potential use in non-AD amyloidopathies.
  •  
6.
  • Leuzy, Antoine, et al. (författare)
  • Tau PET imaging in neurodegenerative tauopathies-still a challenge
  • 2019
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 24:8, s. 1112-1134
  • Forskningsöversikt (refereegranskat)abstract
    • The accumulation of pathological misfolded tau is a feature common to a collective of neurodegenerative disorders known as tauopathies, of which Alzheimer's disease (AD) is the most common. Related tauopathies include progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), Down's syndrome (DS), Parkinson's disease (PD), and dementia with Lewy bodies (DLB). Investigation of the role of tau pathology in the onset and progression of these disorders is now possible due the recent advent of tau-specific ligands for use with positron emission tomography (PET), including first-(e.g., [F-18] THK5317, [F-18] THK5351, [F-18] AV1451, and [C-11] PBB3) and second-generation compounds [namely [F-18] MK-6240, [F-18] RO-948 (previously referred to as [F-18] RO69558948), [F-18] PI-2620, [F-18] GTP1, [F-18] PM-PBB3, and [F-18] JNJ64349311 ([F-18] JNJ311) and its derivative [F-18] JNJ-067)]. In this review we describe and discuss findings from in vitro and in vivo studies using both initial and new tau ligands, including their relation to biomarkers for amyloid-beta and neurodegeneration, and cognitive findings. Lastly, methodological considerations for the quantification of in vivo ligand binding are addressed, along with potential future applications of tau PET, including therapeutic trials.
  •  
7.
  • Nordberg, Agneta, et al. (författare)
  • The use of PET in Alzheimer disease
  • 2010
  • Ingår i: Nature Reviews Neurology. - : Springer Science and Business Media LLC. - 1759-4758 .- 1759-4766. ; 6:2, s. 78-87
  • Forskningsöversikt (refereegranskat)abstract
    • In Alzheimer disease (AD), which is the most common cause of dementia, the underlying disease pathology most probably precedes the onset of cognitive symptoms by many years. Thus, efforts are underway to find early diagnostic markers as well as disease-modifying treatments for this disorder. PET enables various brain systems to be monitored in living individuals. In patients with AD, PET can be used to investigate changes in cerebral glucose metabolism, various neurotransmitter systems, neuroinflammation, and the protein aggregates that are characteristic of the disease, notably the amyloid deposits. These investigations are helping to further our understanding of the complex pathophysiological mechanisms that underlie AD, as well as aiding the early and differential diagnosis of the disease in the clinic. In the future, PET studies will also be useful for identifying new therapeutic targets and monitoring treatment outcomes. Amyloid imaging could be useful as early diagnostic marker of AD and for selecting patients for anti-amyloid-beta therapy, while cerebral glucose metabolism could be a suitable PET marker for monitoring disease progression. For the near future, multitracer PET studies are unlikely to be used routinely in the clinic for AD, being both burdensome and expensive; however, such studies are very informative in a research context.
  •  
8.
  • Sehlin, Dag, 1976-, et al. (författare)
  • Engineered antibodies : new possibilities for brain PET?
  • 2019
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : SPRINGER. - 1619-7070 .- 1619-7089. ; 46:13, s. 2848-2858
  • Forskningsöversikt (refereegranskat)abstract
    • Almost 50 million people worldwide are affected by Alzheimer's disease (AD), the most common neurodegenerative disorder. Development of disease-modifying therapies would benefit from reliable, non-invasive positron emission tomography (PET) biomarkers for early diagnosis, monitoring of disease progression, and assessment of therapeutic effects. Traditionally, PET ligands have been based on small molecules that, with the right properties, can penetrate the blood-brain barrier (BBB) and visualize targets in the brain. Recently a new class of PET ligands based on antibodies have emerged, mainly in applications related to cancer. While antibodies have advantages such as high specificity and affinity, their passage across the BBB is limited. Thus, to be used as brain PET ligands, antibodies need to be modified for active transport into the brain. Here, we review the development of radioligands based on antibodies for visualization of intrabrain targets. We focus on antibodies modified into a bispecific format, with the capacity to undergo transferrin receptor 1 (TfR1)-mediated transcytosis to enter the brain and access pathological proteins, e.g. amyloid-beta. A number of such antibody ligands have been developed, displaying differences in brain uptake, pharmacokinetics, and ability to bind and visualize the target in the brain of transgenic mice. Potential pathological changes related to neurodegeneration, e.g. misfolded proteins and neuroinflammation, are suggested as future targets for this novel type of radioligand. Challenges are also discussed, such as the temporal match of radionuclide half-life with the ligand's pharmacokinetic profile and translation to human use. In conclusion, brain PET imaging using bispecific antibodies, modified for receptor-mediated transcytosis across the BBB, is a promising method for specifically visualizing molecules in the brain that are difficult to target with traditional small molecule ligands.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy