SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Nordberg Agneta) ;pers:(Darreh Shori Taher)"

Search: WFRF:(Nordberg Agneta) > Darreh Shori Taher

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Darreh-Shori, Taher, et al. (author)
  • Differential levels of apolipoprotein E and butyrylcholinesterase show strong association with pathological signs of Alzheimer's disease in the brain in vivo
  • 2011
  • In: Neurobiology of Aging. - : Elsevier. - 0197-4580 .- 1558-1497. ; 32:12, s. 2320.e15-2320.e32
  • Journal article (peer-reviewed)abstract
    • Recently, we reported that 3 of the known risk factors of Alzheimer's disease (AD), i.e., advanced age, apolipoprotein E (ApoE) ε4, and female gender, are associated with differential levels of ApoE proteins and butyrylcholinesterase (BuChE) in the cerebrospinal fluid (CSF) of AD patients. The ApoE ε4 allele and certain BuChE polymorphisms synergistically affect the conversion rate of mild cognitive impairment (MCI) to AD. Here, we investigated interrelationships between ApoE and BuChE levels, and pathological markers of AD in vivo. CSF from patients with probable AD, assessed for cerebral glucose metabolism (CMRglc; n = 50) and Pittsburgh compound B (PIB) retention (β-amyloid [Aβ] load, n = 29) by positron emission tomography (PET), was used for measurement of BuChE, ApoE, Aβ, tau, phosphorylated tau (P-tau) and interleukin-1β (IL-1β) levels. Levels of ApoE and BuChE strongly correlated with CMRglc (fluorodeoxyglucose [FDG]-PET, r = 0.54, p < 0.0001, n = 50), cerebral Aβ load (PIB retention, r = 0.73, p < 0.0001, n = 29), and CSF P-tau (r = 0.73, p < 0.0001, n = 33). High ApoE protein was tied to low CMRglc and high PIB retention and P-tau. BuChE levels had opposite relationships. Other CSF covariates were levels of interleukin-1β and Aβ42peptide. The pattern of the patients' cognitive Z-scores strongly supported these observations. High ApoE protein was also linked to changes in 3 of the biodynamic properties of BuChE. In vitro analysis indicated that high ApoE protein levels were related to an increased pool of dormant BuChE molecules with an abnormally high intrinsic catalytic rate in CSF, which was “turned on” by excess Aβ peptides. The findings suggest that abnormally high levels of ApoE may play a causative role in the pathological events of AD, particularly those involving the early cholinergic deficit in the AD brain, through modulation of cholinesterases activities, hence disturbing the acetylcholine-dependent activity of neurons and nonexcitable cells such as glial cells.
  •  
2.
  • Darreh-Shori, Taher, et al. (author)
  • Functional variability in butyrylcholinesterase activity regulates intrathecal cytokine and astroglial biomarker profiles in patients with Alzheimer's disease
  • 2013
  • In: Neurobiology of Aging. - : Elsevier BV. - 0197-4580 .- 1558-1497. ; 34:11, s. 2465-2481
  • Journal article (peer-reviewed)abstract
    • Butyrylcholinesterase (BuChE) activity is associated with activated astrocytes in Alzheimer's disease brain. The BuChE-K variant exhibits 30%-60% reduced acetylcholine (ACh) hydrolyzing capacity. Considering the increasing evidence of an immune-regulatory role of ACh, we investigated if genetic heterogeneity in BuChE affects cerebrospinal fluid (CSF) biomarkers of inflammation and cholinoceptive glial function. Alzheimer's disease patients (n = 179) were BCHE-K-genotyped. Proteomic and enzymatic analyses were performed on CSF and/or plasma. BuChE genotype was linked with differential CSF levels of glial fibrillary acidic protein, S100B, interleukin-1 beta, and tumor necrosis factor (TNF)-alpha. BCHE-K noncarriers displayed 100%-150% higher glial fibrillary acidic protein and 64%-110% higher S100B than BCHE-K carriers, who, in contrast, had 40%-80% higher interleukin-1b and 21%-27% higher TNF-alpha compared with noncarriers. A high level of CSF BuChE enzymatic phenotype also significantly correlated with higher CSF levels of astroglial markers and several factors of the innate complement system, but lower levels of proinflammatory cytokines. These individuals also displayed beneficial paraclinical and clinical findings, such as high cerebral glucose utilization, low beta-amyloid load, and less severe progression of clinical symptoms. In vitro analysis on human astrocytes confirmed the involvement of a regulated BuChE status in the astroglial responses to TNF-alpha and ACh. Histochemical analysis in a rat model of nerve injury-induced neuroinflammation, showed focal assembly of astroglial cells in proximity of BuChE-immunolabeled sites. In conclusion, these results suggest that BuChE enzymatic activity plays an important role in regulating intrinsic inflammation and activity of cholinoceptive glial cells and that this might be of clinical relevance. The dissociation between astroglial markers and inflammatory cytokines indicates that a proper activation and maintenance of astroglial function is a beneficial response, rather than a disease-driving mechanism. Further studies are needed to explore the therapeutic potential of manipulating BuChE activity or astroglial functional status. (C) 2013 Elsevier Inc. All rights reserved.
  •  
3.
  • Kadir, Ahmadul, et al. (author)
  • Changes in brain 11C-nicotine binding sites in patients with mild Alzheimer's disease following rivastigmine treatment as assessed by PET
  • 2007
  • In: Psychopharmacology. - : Springer Science and Business Media LLC. - 0033-3158 .- 1432-2072. ; 191:4, s. 1005-1014
  • Journal article (peer-reviewed)abstract
    • Rationale  Marked reduction in the cortical nicotinic acetylcholine receptors is observed in the brain of patients suffering from Alzheimer’s disease (AD). Although cholinesterase inhibitors are used for symptomatic treatment of mild to moderate AD patients, numerous long-term treatment studies indicate that they might stabilize or halt the progression of the disease by restoring the central cholinergic neurotransmission. Thus, we used positron emission tomography (PET) technique as a sensitive approach to assess longitudinal changes in the nicotine binding sites in the brains of patients with AD. Objective  To evaluate changes in brain nicotinic binding sites in relation to inhibition level of cholinesterases in cerebrospinal fluid (CSF) and plasma and changes in cognitive performance of the patients in different neuropsychological tests after rivastigmine treatment. Materials and methods  Ten mild AD patients received rivastigmine for 12 months. A dual-tracer PET model with administration of 15O–water and (S)(–)11C–nicotine was used to assess 11C–nicotine binding sites in the brain at baseline and after 3 and 12 months of the treatment. Cholinesterase activities in CSF and plasma were assessed colorimetrically. Results  The 11C–nicotine binding sites were significantly increased 12–19% in several cortical brain regions after 3 months compared with baseline, while the increase was not significant after 12 months of the treatment. After 3 months treatment, low enzyme inhibition in CSF and plasma was correlated with higher cortical 11C–nicotine binding. The 11C–nicotine binding positively correlated with attentional task at the 12-month follow-up. Conclusion  Changes in the 11C–nicotine binding during rivastigmine treatment might represent remodeling of the cholinergic and related neuronal network.
  •  
4.
  • Kadir, Ahmadul, et al. (author)
  • Positron emission tomography imaging and clinical progression in relation to molecular pathology in the first Pittsburgh Compound B positron emission tomography patient with Alzheimer’s disease
  • 2011
  • In: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 134:1, s. 301-317
  • Journal article (peer-reviewed)abstract
    • The accumulation of β-amyloid in the brain is an early event in Alzheimer’s disease. This study presents the first patient with Alzheimer’s disease who underwent positron emission tomography imaging with the amyloid tracer, Pittsburgh Compound B to visualize fibrillar β-amyloid in the brain. Here we relate the clinical progression, amyloid and functional brain positron emission tomography imaging with molecular neuropathological alterations at autopsy to gain new insight into the relationship between β-amyloid accumulation, inflammatory processes and the cholinergic neurotransmitter system in Alzheimer’s disease brain. The patient underwent positron emission tomography studies with 18F-fluorodeoxyglucose three times (at ages 53, 56 and 58 years) and twice with Pittsburgh Compound B (at ages 56 and 58 years), prior to death at 61 years of age. The patient showed a pronounced decline in cerebral glucose metabolism and cognition during disease progression, while Pittsburgh Compound B retention remained high and stable at follow-up. Neuropathological examination of the brain at autopsy confirmed the clinical diagnosis of pure Alzheimer’s disease. A comprehensive neuropathological investigation was performed in nine brain regions to measure the regional distribution of β-amyloid, neurofibrillary tangles and the levels of binding of 3H-nicotine and 125I-α-bungarotoxin to neuronal nicotinic acetylcholine receptor subtypes, 3H-L-deprenyl to activated astrocytes and 3H-PK11195 to microglia, as well as butyrylcholinesterase activity. Regional in vivo 11C-Pittsburgh Compound B-positron emission tomography retention positively correlated with 3H-Pittsburgh Compound B binding, total insoluble β-amyloid, and β-amyloid plaque distribution, but not with the number of neurofibrillary tangles measured at autopsy. There was a negative correlation between regional fibrillar β-amyloid and levels of 3H-nicotine binding. In addition, a positive correlation was found between regional 11C-Pittsburgh Compound B positron emission tomography retention and 3H-Pittsburgh Compound B binding with the number of glial fibrillary acidic protein immunoreactive cells, but not with 3H-L-deprenyl and 3H-PK-11195 binding. In summary, high 11C-Pittsburgh Compound B positron emission tomography retention significantly correlates with both fibrillar β-amyloid and losses of neuronal nicotinic acetylcholine receptor subtypes at autopsy, suggesting a closer involvement of β-amyloid pathology with neuronal nicotinic acetylcholine receptor subtypes than with inflammatory processes.
  •  
5.
  • Kumar, Rajnish, et al. (author)
  • Proton pump inhibitors act with unprecedented potencies as inhibitors of the acetylcholine biosynthesizing enzyme - A plausible missing link for their association with incidence of dementia
  • 2020
  • In: Alzheimer's & Dementia. - : WILEY. - 1552-5260 .- 1552-5279. ; 16:7, s. 1031-1042
  • Journal article (peer-reviewed)abstract
    • Introduction: Several pharmacoepidemiological studies indicate that proton pump inhibitors (PPIs) significantly increase the risk of dementia. Yet, the underlying mechanism is not known. Here, we report the discovery of an unprecedented mode of action of PPIs that explains how PPIs may increase the risk of dementia.Methods: Advanced in silico docking analyses and detailed enzymological assessments were performed on PPIs against the core-cholinergic enzyme, choline-acetyltransferase (ChAT), responsible for biosynthesis of acetylcholine (ACh).Results: This report shows compelling evidence that PPIs act as inhibitors of ChAT, with high selectivity and unprecedented potencies that lie far below their in vivo plasma and brain concentrations.Discussion: Given that accumulating evidence points at cholinergic dysfunction as a driving force of major dementia disorders, our findings mechanistically explain how prolonged use of PPIs may increase incidence of dementia. This call for restrictions for prolonged use of PPIs in elderly, and in patients with dementia or amyotrophic lateral sclerosis.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view