SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nordling Margareta 1962) ;lar1:(ki)"

Sökning: WFRF:(Nordling Margareta 1962) > Karolinska Institutet

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Antoniou, A. C., et al. (författare)
  • Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers : Implications for risk prediction
  • 2010
  • Ingår i: Cancer Research. - : American Association for Cancer Research. - 0008-5472 .- 1538-7445. ; 70:23, s. 9742-9754
  • Tidskriftsartikel (refereegranskat)abstract
    • The known breast cancer susceptibility polymorphisms in FGFR2, TNRC9/TOX3, MAP3K1, LSP1, and 2q35 confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. We evaluated the associations of 3 additional single nucleotide polymorphisms (SNPs), rs4973768 in SLC4A7/NEK10, rs6504950 in STXBP4/COX11, and rs10941679 at 5p12, and reanalyzed the previous associations using additional carriers in a sample of 12,525 BRCA1 and 7,409 BRCA2 carriers. Additionally, we investigated potential interactions between SNPs and assessed the implications for risk prediction. The minor alleles of rs4973768 and rs10941679 were associated with increased breast cancer risk for BRCA2 carriers (per-allele HR = 1.10, 95% CI: 1.03-1.18, P = 0.006 and HR = 1.09, 95% CI: 1.01-1.19, P = 0.03, respectively). Neither SNP was associated with breast cancer risk for BRCA1 carriers, and rs6504950 was not associated with breast cancer for either BRCA1 or BRCA2 carriers. Of the 9 polymorphisms investigated, 7 were associated with breast cancer for BRCA2 carriers (FGFR2, TOX3, MAP3K1, LSP1, 2q35, SLC4A7, 5p12, P = 7 × 10-11 - 0.03), but only TOX3 and 2q35 were associated with the risk for BRCA1 carriers (P = 0.0049, 0.03, respectively). All risk-associated polymorphisms appear to interact multiplicatively on breast cancer risk for mutation carriers. Based on the joint genotype distribution of the 7 risk-associated SNPs in BRCA2 mutation carriers, the 5% of BRCA2 carriers at highest risk (i.e., between 95th and 100th percentiles) were predicted to have a probability between 80% and 96% of developing breast cancer by age 80, compared with 42% to 50% for the 5% of carriers at lowest risk. Our findings indicated that these risk differences might be sufficient to influence the clinical management of mutation carriers.
  •  
2.
  • Engel, C., et al. (författare)
  • Association of the variants CASP8 D302H and CASP10 V410I with breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers
  • 2010
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 19:11, s. 2859-2868
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The genes caspase-8 (CASP8) and caspase-10 (CASP10) functionally cooperate and play a key role in the initiation of apoptosis. Suppression of apoptosis is one of the major mechanisms underlying the origin and progression of cancer. Previous case-control studies have indicated that the polymorphisms CASP8 D302H and CASP10 V410I are associated with a reduced risk of breast cancer in the general population.Methods: To evaluate whether the CASP8 D302H (CASP10 V410I) polymorphisms modify breast or ovarian cancer risk in BRCA1 and BRCA2 mutation carriers, we analyzed 7,353 (7,227) subjects of white European origin provided by 19 (18) study groups that participate in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). A weighted cohort approach was used to estimate hazard ratios (HR) and 95% confidence intervals (95% CI).Results: The minor allele of CASP8 D302H was significantly associated with a reduced risk of breast cancer (per-allele HR, 0.85; 95% CI, 0.76-0.97; Ptrend = 0.011) and ovarian cancer (per-allele HR, 0.69; 95% CI, 0.53-0.89; Ptrend = 0.004) for BRCA1 but not for BRCA2 mutation carriers. The CASP10 V410I polymorphism was not associated with breast or ovarian cancer risk for BRCA1 or BRCA2 mutation carriers.Conclusions: CASP8 D302H decreases breast and ovarian cancer risk for BRCA1 mutation carriers but not for BRCA2 mutation carriers.Impact: The combined application of these and other recently identified genetic riskmodifiers could in the future allow better individual risk calculation and could aid in the individualized counseling and decision making with respect to preventive options in BRCA1 mutation carriers.
  •  
3.
  • Johnatty, S. E., et al. (författare)
  • No evidence that GATA3 rs570613 SNP modifies breast cancer risk
  • 2009
  • Ingår i: Breast Cancer Research and Treatment. - : Springer. - 0167-6806 .- 1573-7217. ; 117:2, s. 371-379
  • Tidskriftsartikel (refereegranskat)abstract
    • GATA-binding protein 3 (GATA3) is a transcription factor that is crucial to mammary gland morphogenesis and differentiation of progenitor cells, and has been suggested to have a tumor suppressor function. The rs570613 single nucleotide polymorphism (SNP) in intron 4 of GATA3 was previously found to be associated with a reduction in breast cancer risk in the Cancer Genetic Markers of Susceptibility project and in pooled analysis of two case-control studies from Norway and Poland (P trend = 0.004), with some evidence for a stronger association with estrogen receptor (ER) negative tumours [Garcia-Closas M et al. (2007) Cancer Epidemiol Biomarkers Prev 16:2269-2275]. We genotyped GATA3 rs570613 in 6,388 cases and 4,995 controls from the Breast Cancer Association Consortium (BCAC) and 5,617 BRCA1 and BRCA2 carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). We found no association between this SNP and breast cancer risk in BCAC cases overall (ORper-allele = 1.00, 95% CI 0.94-1.05), in ER negative BCAC cases (ORper-allele = 1.02, 95% CI 0.91-1.13), in BRCA1 mutation carriers RRper-allele = 0.99, 95% CI 0.90-1.09) or BRCA2 mutation carriers (RRper-allele = 0.93, 95% CI 0.80-1.07). We conclude that there is no evidence that either GATA3 rs570613, or any variant in strong linkage disequilibrium with it, is associated with breast cancer risk in women. 
  •  
4.
  • Kanter-Smoler, Gunilla, et al. (författare)
  • Novel findings in Swedish patients with MYH-associated polyposis: mutation detection and clinical characterization
  • 2006
  • Ingår i: Clin Gastroenterol Hepatol. - : Elsevier BV. - 1542-3565. ; 4:4, s. 499-506
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND & AIMS: Biallelic mutations in the base-excision repair gene MYH have recently been associated with recessive inheritance of multiple colorectal adenomas. An investigation and characterization of MYH mutations in Swedish patients were therefore carried out. METHODS: A set of 15 unrelated adenomatous polyposis coli (APC)-mutation negative patients from the Swedish Polyposis Registry was screened for germline mutations in the MYH gene. The patients were clinically characterized and compared with 43 APC-mutation positive probands diagnosed during the same period. RESULTS: Disease-causing biallelic MYH mutations were identified in 6 patients (40%). The mean age at diagnosis was 47.8 years versus 34.1 years in APC-mutation positive patients (P = .015). Colorectal cancer at diagnosis of polyposis was present in 67% (4/6) of the patients, and all were right-sided, compared with only 19% versus 12.5% right-sided cancer in APC-mutation positive patients. Upper gastrointestinal manifestations were diagnosed in 1 of 5 compared with 23 of 27 in APC-mutation positive patients (odds ratio, 23; 95% confidence interval, 2-263; P = .0086). One family exhibited apparent dominant inheritance of colorectal adenomatous polyposis. Two new pathogenic mutations, MYH p.G175E and p.P391L, were identified. The mutations are argued to introduce profound changes in substrate-recognizing domains of the protein. CONCLUSIONS: Biallelic MYH mutations, including 2 novel mutations, were found in a substantial number of the patients with multiple colorectal adenomas who were negative for APC-mutation. The examined MYH-mutation positive patients were found to have higher risks of colorectal cancer at diagnosis, right-sided location of cancers, and a significantly lower incidence of upper gastrointestinal manifestations, compared with APC-mutation positive patients.
  •  
5.
  • Rohlin, Anna, et al. (författare)
  • GREM1 and POLE variants in hereditary colorectal cancer syndromes
  • 2016
  • Ingår i: Genes, Chromosomes and Cancer. - : Wiley. - 1045-2257 .- 1098-2264. ; 55:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Hereditary factors are thought to play a role in at least one third of patients with colorectal cancer (CRC) but only a limited proportion of these have mutations in known high-penetrant genes. In a relatively large part of patients with a few or multiple colorectal polyps the underlying genetic cause of the disease is still unknown. Using exome sequencing in combination with linkage analyses together with detection of copy-number variations (CNV), we have identified a duplication in the regulatory region of the GREM1 gene in a family with an attenuated/atypical polyposis syndrome. In addition, 107 patients with colorectal cancer and/or polyposis were analyzed for mutations in the candidate genes identified. We also performed screening of the exonuclease domain of the POLE gene in a subset of these patients. The duplication of 16 kb in the regulatory region of GREM1 was found to be disease-causing in the family. Functional analyses revealed a higher expression of the GREM1 gene in colorectal tissue in duplication carriers. Screening of the exonuclease domain of POLE in additional CRC patients identified a probable causative novel variant c.1274A>G, p.Lys425Arg. In conclusion a high penetrant duplication in the regulatory region of GREM1, predisposing to CRC, was identified in a family with attenuated/atypical polyposis. A POLE variant was identified in a patient with early onset CRC and a microsatellite stable (MSS) tumor. Mutations leading to increased expression of genes can constitute disease-causing mutations in hereditary CRC syndromes. © 2015 The Authors. Genes, Chromosomes & Cancer Published by Wiley Periodicals, Inc.
  •  
6.
  • Rohlin, Anna, et al. (författare)
  • Inactivation of promoter 1B of APC causes partial gene silencing: evidence for a significant role of the promoter in regulation and causative of familial adenomatous polyposis.
  • 2011
  • Ingår i: Oncogene. - : Springer Science and Business Media LLC. - 1476-5594 .- 0950-9232. ; 30:50, s. 4977-89
  • Tidskriftsartikel (refereegranskat)abstract
    • Familial adenomatous polyposis (FAP) is caused by germline mutations in the adenomatous polyposis coli (APC) gene. Two promoters, 1A and 1B, have been recognized in APC, and 1B is thought to have a minor role in the regulation of the gene. We have identified a novel deletion encompassing half of this promoter in the largest family (Family 1) of the Swedish Polyposis Registry. The mutation leads to an imbalance in allele-specific expression of APC, and transcription from promoter 1B was highly impaired in both normal colorectal mucosa and blood from mutation carriers. To establish the significance of promoter 1B in normal colorectal mucosa (from controls), expression levels of specific transcripts from each of the promoters, 1A and 1B, were examined, and the expression from 1B was significantly higher compared with 1A. Significant amounts of transcripts generated from promoter 1B were also determined in a panel of 20 various normal tissues examined. In FAP-related tumors, the APC germline mutation is proposed to dictate the second hit. Mutations leaving two or three out of seven 20-amino-acid repeats in the central domain of APC intact seem to be required for tumorigenesis. We examined adenomas from mutation carriers in Family 1 for second hits in the entire gene without any findings, however, loss of the residual expression of the deleterious allele was observed. Three major conclusions of significant importance in relation to the function of APC can be drawn from this study; (i) germline inactivation of promoter 1B is disease causing in FAP; (ii) expression of transcripts from promoter 1B is generated at considerable higher levels compared with 1A, demonstrating a hitherto unknown importance of 1B; (iii) adenoma formation in FAP, caused by impaired function of promoter 1B, does not require homozygous inactivation of APC allowing for alternative genetic models as basis for adenoma formation.
  •  
7.
  • Antoniou, A. C., et al. (författare)
  • Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers
  • 2009
  • Ingår i: Human Molecular Genetics. - [Antoniou, Antonis C.; McGuffog, Lesley; Peock, Susan; Cook, Margaret; Frost, Debra; Oliver, Clare; Platte, Radka; Pooley, Karen A.; Easton, Douglas F.] Univ Cambridge, Dept Publ Hlth & Primary Care, Canc Res UK Genet Epidemiol Unit, Cambridge, England. [Sinilnikova, Olga M.; Leone, Melanie] Univ Lyon, CNRS, Hosp Civils Lyon,Ctr Leon Berard,UMR5201, Unite Mixte Genet Constitut Canc Frequents, Lyon, France. [Healey, Sue; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Chenevix-Trench, Georgia] Queensland Inst Med Res, Brisbane, Qld 4029, Australia. [Nevanlinna, Heli; Heikkinen, Tuomas] Univ Helsinki, Cent Hosp, Dept Obstet & Gynecol, FIN-00290 Helsinki, Finland. [Simard, Jacques] Univ Laval, Quebec City, PQ, Canada. [Simard, Jacques] Univ Quebec, Ctr Hosp, Canada Res Chair Oncogenet, Canc Genom Lab, Quebec City, PQ, Canada. Peter MacCallum Canc Inst, Melbourne, Vic 3002, Australia. [Neuhausen, Susan L.; Ding, Yuan C.] Univ Calif Irvine, Dept Epidemiol, Irvine, CA USA. [Couch, Fergus J.; Wang, Xianshu; Fredericksen, Zachary] Mayo Clin, Rochester, MN USA. [Peterlongo, Paolo; Peissel, Bernard; Radice, Paolo] Fdn IRCCS Ist Nazl Tumori, Milan, Italy. [Peterlongo, Paolo; Radice, Paolo] Fdn Ist FIRC Oncol Molecolare, Milan, Italy. [Bonanni, Bernardo; Bernard, Loris] Ist Europeo Oncol, Milan, Italy. [Viel, Alessandra] IRCCS, Ctr Riferimento Oncol, Aviano, Italy. [Bernard, Loris] Cogentech, Consortium Genom Technol, Milan, Italy. [Szabo, Csilla I.] Mayo Clin, Coll Med, Dept Lab Med & Pathol, Rochester, MN USA. [Foretova, Lenka] Masaryk Mem Canc Inst, Dept Canc Epidemiol & Genet, Brno, Czech Republic. [Zikan, Michal] Charles Univ Prague, Dept Biochem & Expt Oncol, Fac Med 1, Prague, Czech Republic. [Claes, Kathleen] Ghent Univ Hosp, Ctr Med Genet, B-9000 Ghent, Belgium. [Greene, Mark H.; Mai, Phuong L.] US Natl Canc Inst, Clin Genet Branch, Rockville, MD USA. [Rennert, Gad; Lejbkowicz, Flavio] CHS Natl Canc Control Ctr, Haifa, Israel. [Rennert, Gad; Lejbkowicz, Flavio] Carmel Hosp, Dept Community Med & Epidemiol, Haifa, Israel. [Rennert, Gad; Lejbkowicz, Flavio] B Rappaport Fac Med, Haifa, Israel. [Andrulis, Irene L.; Glendon, Gord] Canc Care Ontario, Ontario Canc Genet Network, Toronto, ON M5G 2L7, Canada. [Andrulis, Irene L.] Mt Sinai Hosp, Fred A Litwin Ctr Canc Genet, Samuel Lunenfeld Res Inst, Toronto, ON, Canada. [Andrulis, Irene L.] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada. [Gerdes, Anne-Marie; Thomassen, Mads] Odense Univ Hosp, Dept Biochem Pharmacol & Genet, DK-5000 Odense, Denmark. [Sunde, Lone] Aarhus Univ Hosp, Dept Clin Genet, DK-8000 Aarhus, Denmark. [Caligo, Maria A.] Univ Pisa, Div Surg Mol & Ultrastructural Pathol, Dept Oncol, Pisa, Italy. [Caligo, Maria A.] Pisa Univ Hosp, Pisa, Italy. [Laitman, Yael; Kontorovich, Tair; Cohen, Shimrit; Friedman, Eitan] Chaim Sheba Med Ctr, Susanne Levy Gertner Oncogenet Unit, IL-52621 Tel Hashomer, Israel. [Kaufman, Bella] Chaim Sheba Med Ctr, Inst Oncol, IL-52621 Tel Hashomer, Israel. [Kaufman, Bella; Friedman, Eitan] Tel Aviv Univ, Sackler Sch Med, IL-69978 Tel Aviv, Israel. [Dagan, Efrat; Baruch, Ruth Gershoni] Rambam Med Ctr, Genet Inst, Haifa, Israel. [Harbst, Katja] Lund Univ, Dept Oncol, S-22100 Lund, Sweden. [Barbany-Bustinza, Gisela; Rantala, Johanna] Karolinska Univ Hosp, Dept Clin Genet, Stockholm, Sweden. [Ehrencrona, Hans] Uppsala Univ, Dept Genet & Pathol, Uppsala, Sweden. [Karlsson, Per] Sahlgrenska Univ, Dept Oncol, Gothenburg, Sweden. [Domchek, Susan M.; Nathanson, Katherine L.] Univ Penn, Philadelphia, PA 19104 USA. [Osorio, Ana; Benitez, Javier] Ctr Invest Biomed Red Enfermedades Raras CIBERERE, Inst Salud Carlos III, Madrid, Spain. [Osorio, Ana; Benitez, Javier] Spanish Natl Canc Ctr CNIO, Human Canc Genet Programme, Human Genet Grp, Madrid, Spain. [Blanco, Ignacio] Catalan Inst Oncol ICO, Canc Genet Counseling Program, Barcelona, Spain. [Lasa, Adriana] Hosp Santa Creu & Sant Pau, Genet Serv, Barcelona, Spain. [Hamann, Ute] Deutsch Krebsforschungszentrum, Neuenheimer Feld 580 69120, D-6900 Heidelberg, Germany. [Hogervorst, Frans B. L.] Netherlands Canc Inst, Dept Pathol, Family Canc Clin, NL-1066 CX Amsterdam, Netherlands. [Rookus, Matti A.] Netherlands Canc Inst, Dept Epidemiol, Amsterdam, Netherlands. [Collee, J. Margriet] Erasmus Univ, Dept Clin Genet, Rotterdam Family Canc Clin, Med Ctr, NL-3000 DR Rotterdam, Netherlands. [Devilee, Peter] Dept Genet Epidemiol, Leiden, Netherlands. [Wijnen, Juul] Leiden Univ, Med Ctr, Ctr Human & Clin Genet, Leiden, Netherlands. [Ligtenberg, Marjolijn J.] Radboud Univ Nijmegen, Med Ctr, Dept Human Genet, NL-6525 ED Nijmegen, Netherlands. [van der Luijt, Rob B.] Univ Utrecht, Med Ctr, Dept Clin Mol Genet, NL-3508 TC Utrecht, Netherlands. [Aalfs, Cora M.] Univ Amsterdam, Acad Med Ctr, Dept Clin Genet, NL-1105 AZ Amsterdam, Netherlands. [Waisfisz, Quinten] Vrije Univ Amsterdam, Med Ctr, Dept Clin Genet, Amsterdam, Netherlands. [van Roozendaal, Cornelis E. P.] Univ Med Ctr, Dept Clin Genet, Maastricht, Netherlands. [Evans, D. Gareth; Lalloo, Fiona] Cent Manchester Univ Hosp, NHS Fdn Trust, Manchester Acad Hlth Sci Ctr, Manchester, Lancs, England. [Eeles, Rosalind] Inst Canc Res, Translat Canc Genet Team, London SW3 6JB, England. [Eeles, Rosalind] Royal Marsden NHS Fdn Trust, London, England. [Izatt, Louise] Guys Hosp, Clin Genet, London SE1 9RT, England. [Davidson, Rosemarie] Ferguson Smith Ctr Clin Genet, Glasgow, Lanark, Scotland. [Chu, Carol] Yorkshire Reg Genet Serv, Leeds, W Yorkshire, England. [Eccles, Diana] Princess Anne Hosp, Wessex Clin Genet Serv, Southampton, Hants, England. [Cole, Trevor] Birmingham Womens Hosp Healthcare, NHS Trust, W Midlands Reg Genet Serv, Birmingham, W Midlands, England. [Hodgson, Shirley] Univ London, Dept Canc Genet, St Georges Hosp, London, England. [Godwin, Andrew K.; Daly, Mary B.] Fox Chase Canc Ctr, Philadelphia, PA 19111 USA. [Stoppa-Lyonnet, Dominique] Univ Paris 05, Paris, France. [Stoppa-Lyonnet, Dominique] Inst Curie, INSERM U509, Serv Genet Oncol, Paris, France. [Buecher, Bruno] Inst Curie, Dept Genet, Paris, France. [Bressac-de Paillerets, Brigitte; Remenieras, Audrey; Lenoir, Gilbert M.] Inst Cancrol Gustave Roussy, Dept Genet, Villejuif, France. [Bressac-de Paillerets, Brigitte] Inst Cancerol Gustave Roussy, INSERM U946, Villejuif, France. [Caron, Olivier] Inst Cancerol Gustave Roussy, Dept Med, Villejuif, France. [Lenoir, Gilbert M.] Inst Cancerol Gustave Roussy, CNRS FRE2939, Villejuif, France. [Sevenet, Nicolas; Longy, Michel] Inst Bergonie, Lab Genet Constitutionnelle, Bordeaux, France. [Longy, Michel] Inst Bergonie, INSERM U916, Bordeaux, France. [Ferrer, Sandra Fert] Hop Hotel Dieu, Ctr Hosp, Lab Genet Chromosom, Chambery, France. [Prieur, Fabienne] CHU St Etienne, Serv Genet Clin Chromosom, St Etienne, France. [Goldgar, David] Univ Utah, Dept Dermatol, Salt Lake City, UT 84112 USA. [Miron, Alexander; Yassin, Yosuf] Dana Farber Canc Inst, Boston, MA 02115 USA. [John, Esther M.] No Calif Canc Ctr, Fremont, CA USA. [John, Esther M.] Stanford Univ, Sch Med, Stanford, CA 94305 USA. [Buys, Saundra S.] Univ Utah, Hlth Sci Ctr, Huntsman Canc Inst, Salt Lake City, UT USA. [Hopper, John L.] Univ Melbourne, Melbourne, Australia. [Terry, Mary Beth] Columbia Univ, New York, NY USA. [Singer, Christian; Gschwantler-Kaulich, Daphne; Staudigl, Christine] Med Univ Vienna, Div Special Gynecol, Dept OB GYN, Vienna, Austria. [Hansen, Thomas V. O.] Univ Copenhagen, Rigshosp, Dept Clin Biochem, DK-2100 Copenhagen, Denmark. [Barkardottir, Rosa Bjork] Landspitali Univ Hosp, Dept Pathol, Reykjavik, Iceland. [Kirchhoff, Tomas; Pal, Prodipto; Kosarin, Kristi; Offit, Kenneth] Mem Sloan Kettering Canc Ctr, Dept Med, Clin Genet Serv, New York, NY 10021 USA. [Piedmonte, Marion] Roswell Pk Canc Inst, GOG Stat & Data Ctr, Buffalo, NY 14263 USA. [Rodriguez, Gustavo C.] Evanston NW Healthcare, NorthShore Univ Hlth Syst, Evanston, IL 60201 USA. [Wakeley, Katie] Tufts Univ, New England Med Ctr, Boston, MA 02111 USA. [Boggess, John F.] Univ N Carolina, Chapel Hill, NC 27599 USA. [Basil, Jack] St Elizabeth Hosp, Edgewood, KY 41017 USA. [Schwartz, Peter E.] Yale Univ, Sch Med, New Haven, CT 06510 USA. [Blank, Stephanie V.] New York Univ, Sch Med, New York, NY 10016 USA. [Toland, Amanda E.] Ohio State Univ, Dept Internal Med, Columbus, OH 43210 USA. [Toland, Amanda E.] Ohio State Univ, Div Human Canc Genet, Ctr Comprehens Canc, Columbus, OH 43210 USA. [Montagna, Marco; Casella, Cinzia] IRCCS, Ist Oncologico Veneto, Immunol & Mol Oncol Unit, Padua, Italy. [Imyanitov, Evgeny N.] NN Petrov Inst Res Inst, St Petersburg, Russia. [Allavena, Anna] Univ Turin, Dept Genet Biol & Biochem, Turin, Italy. [Schmutzler, Rita K.; Versmold, Beatrix; Arnold, Norbert] Univ Cologne, Dept Obstet & Gynaecol, Div Mol Gynaeco Oncol, Cologne, Germany. [Engel, Christoph] Univ Leipzig, Inst Med Informat Stat & Epidemiol, Leipzig, Germany. [Meindl, Alfons] Tech Univ Munich, Dept Obstet & Gynaecol, Munich, Germany. [Ditsch, Nina] Univ Munich, Dept Obstet & Gynecol, Munich, Germany. Univ Schleswig Holstein, Dept Obstet & Gynaecol, Campus Kiel, Germany. [Niederacher, Dieter] Univ Duesseldorf, Dept Obstet & Gynaecol, Mol Genet Lab, Dusseldorf, Germany. [Deissler, Helmut] Univ Ulm, Dept Obstet & Gynaecol, Ulm, Germany. [Fiebig, Britta] Univ Regensburg, Inst Human Genet, Regensburg, Germany. [Suttner, Christian] Univ Heidelberg, Inst Human Genet, Heidelberg, Germany. [Schoenbuchner, Ines] Univ Wurzburg, Inst Human Genet, D-8700 Wurzburg, Germany. [Gadzicki, Dorothea] Med Univ, Inst Cellular & Mol Pathol, Hannover, Germany. [Caldes, Trinidad; de la Hoya, Miguel] Hosp Clinico San Carlos 28040, Madrid, Spain. : Oxford University Press. - 0964-6906 .- 1460-2083. ; 18:22, s. 4442-4456
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies of breast cancer have identified multiple single nucleotide polymorphisms (SNPs) that are associated with increased breast cancer risks in the general population. In a previous study, we demonstrated that the minor alleles at three of these SNPs, in FGFR2, TNRC9 and MAP3K1, also confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. Three additional SNPs rs3817198 at LSP1, rs13387042 at 2q35 and rs13281615 at 8q24 have since been reported to be associated with breast cancer in the general population, and in this study we evaluated their association with breast cancer risk in 9442 BRCA1 and 5665 BRCA2 mutation carriers from 33 study centres. The minor allele of rs3817198 was associated with increased breast cancer risk only for BRCA2 mutation carriers [hazard ratio (HR) = 1.16, 95% CI: 1.07-1.25, P-trend = 2.8 × 10-4]. The best fit for the association of SNP rs13387042 at 2q35 with breast cancer risk was a dominant model for both BRCA1 and BRCA2 mutation carriers (BRCA1: HR = 1.14, 95% CI: 1.04-1.25, P = 0.0047; BRCA2: HR = 1.18 95% CI: 1.04-1.33, P = 0.0079). SNP rs13281615 at 8q24 was not associated with breast cancer for either BRCA1 or BRCA2 mutation carriers, but the estimated association for BRCA2 mutation carriers (per-allele HR = 1.06, 95% CI: 0.98-1.14) was consistent with odds ratio estimates derived from population-based case-control studies. The LSP1 and 2q35 SNPs appear to interact multiplicatively on breast cancer risk for BRCA2 mutation carriers. There was no evidence that the associations vary by mutation type depending on whether the mutated protein is predicted to be stable or not. 
  •  
8.
  • Björk, Jan, et al. (författare)
  • Periampullary adenomas and adenocarcinomas in familial adenomatous polyposis : Cumulative risks and APC gene Mutations
  • 2001
  • Ingår i: Gastroenterology. - : Elsevier. - 0016-5085 .- 1528-0012. ; 121:5, s. 1127-1135
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & Aims: Patients with familial adenomatous polyposis (FAP) have a high prevalence of duodenal adenomas, and the region of the ampulla of rater is the predilection site for duodenal adenocarcinomas. This study assessed the risk of stage IV periampullary adenomas according to the Spigelman classification and periampullary adenocarcinomas in Swedish FAP patients screened by esophagogastroduodenoscopy (EGD). The genotype of patients with stage IV periampullary adenomas and periampullary adenocarcinomas was also investigated. Methods: A retrospective study of 180 patients screened by EGD in 1982-1999 was undertaken. Kaplan-Meier analysis was performed to evaluate cumulative risk. Mutation analysis was carried out in patients with periampullary adenocarcinomas diagnosed outside the screening program, in addition to patients in the screening group with stage IV periampullary adenomas and adenocarcinomas. Results: Periampullary adenoma stage IV was diagnosed in 14 patients (7.8%), with a cumulative risk of 20% at age 60 years. Periampullary adenocarcinoma was diagnosed in 5 patients (2.8%), with a cumulative risk of 10% at age 60. Three of the adenocarcinomas occurred in patients with stage IV periampullary adenomas compared with 2 in patients with less severe periampullary adenomatosis at screening (odds ratio, 31; 95% confidence interval, 4.6-215). Fifteen (88%) of the APC gene mutations were detected; 12 of these were located downstream from codon 1051 in exon 15. Conclusions: The life time risk of severe periampullary lesions in FAP patients is high, and an association between stage IV periampullary adenomas and a malignant course of the periampullary adenomatosis is strongly suggestive. Mutations downstream from codon 1051 seem to be associated with severe periampullary lesions.
  •  
9.
  • Helgadottir, H. T., et al. (författare)
  • Identification of known and novel familial cancer genes in Swedish colorectal cancer families
  • 2021
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 149:3, s. 627-634
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying new candidate colorectal cancer (CRC) genes and mutations are important for clinical cancer prevention as well as in cancer care. Genetic counseling is already implemented for known high-risk variants; however, the majority of CRC are of unknown causes. In our study, 110 CRC patients in 55 Swedish families with a strong history of CRC but unknown genetic causes were analyzed with the aim of identifying novel candidate CRC predisposing genes. Exome sequencing was used to identify rare and high-impact variants enriched in the families. No clear pathogenic variants were found in known CRC predisposing genes; however, potential pathogenic variants in novel CRC predisposing genes were identified. Over 3000 variants with minor allele frequency (MAF) <0.01 and Combined Annotation Dependent Depletion (CADD) > 20 were seen aggregating in the CRC families. Of those, 27 variants with MAF < 0.001 and CADD>25 were considered high-risk mutations. Interestingly, more than half of the high-risk variants were detected in three families, suggesting cumulating contribution of several variants to CRC. In summary, our study shows that despite a strong history of CRC within families, identifying pathogenic variants is challenging. In a small number of families, few rare mutations were shared by affected family members. This could indicate that in the absence of known CRC predisposing genes, a cumulating contribution of mutations leads to CRC observed in these families.
  •  
10.
  • Kanter-Smoler, Gunilla, et al. (författare)
  • Clinical characterization and the mutation spectrum in Swedish adenomatous polyposis families
  • 2008
  • Ingår i: BMC Medicine. - : BioMed Central. - 1741-7015. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The dominantly inherited condition familial adenomatous polyposis (FAP) is caused by germline mutations in the APC gene. Finding the causative mutations has great implications for the families. Correlating the genotypes to the phenotypes could help to improve the diagnosis and follow-up of patients.Methods: Mutation screening of APCand the clinical characterization of 96 unrelated FAP patients from the Swedish Polyposis Registry was performed. In addition to generally used mutation screening methods, analyses of splicing-affecting mutations and investigations of the presence of low-frequency mutation alleles, indicating mosaics, have been performed, as well as quantitative real-time polymerase chain reaction to detect lowered expression of APC.Results: Sixty-one different APC mutations in 81 of the 96 families were identified and 27 of those are novel. We have previously shown that 6 of the 96 patients carried biallelic MUTYH mutations. The 9 mutation-negative cases all display an attenuated or atypical phenotype. Probands with a genotype (codon 1250-1464) predicting a severe phenotype had a median age at diagnosis of 21.8 (range, 11-49) years compared with 34.4 (range, 14-57) years among those with mutations outside this region (P < 0.017). Dense polyposis (> 1000) occurred in 75% of the probands with a severe phenotype compared with 30% in those with mutations outside this region. The morbidity in colorectal cancer among probands was 25% at a mean age of 37.5 years and 29% at a mean age of 46.6 years.Conclusion: Using a variety of mutation-detection techniques, we have achieved a 100% detection frequency in classical FAP. Probands with APC mutations outside codon 1250-1464, although exhibiting a less-severe phenotype, are at high risk of having a colorectal cancer at diagnosis indicating that age at diagnosis is as important as the severity of the disease for colorectal cancer morbidity. © 2008 Kanter-Smoler et al; licensee BioMed Central Ltd.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy