SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Norman A) ;lar1:(vti)"

Sökning: WFRF:(Norman A) > VTI - Statens väg- och transportforskningsinstitut

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Denby, Bruce Rolstad, et al. (författare)
  • A coupled road dust and surface moisture model to predict non-exhaust road traffic induced particle emissions (NORTRIP). Part 2 : Surface moisture and salt impact modelling
  • 2013
  • Ingår i: Atmospheric Environment. - : Elsevier. - 1352-2310 .- 1873-2844. ; 81, s. 485-503
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-exhaust traffic induced emissions are a major source of airborne particulate matter in most European countries. This is particularly important in Nordic and Alpine countries where winter time road traction maintenance occurs, e.g. salting and sanding, and where studded tyres are used. Though the total mass generated by wear sources is a key factor in non-exhaust emissions, these emissions are also strongly controlled by surface moisture conditions. In this paper, Part 2, the road surface moisture submodel of a coupled road dust and surface moisture model (NORTRIP) is described.We present a description of the road surface moisture part of the model and apply the coupled model to seven sites in Stockholm, Oslo, Helsinki and Copenhagen over 18 separate periods, ranging from 3.5 to 24 months. At two sites surface moisture measurements are available and the moisture sub-model is compared directly to these observations. The model predicts the frequency of wet roads well at both sites, with an average fractional bias of -2.6%. The model is found to correctly predict the hourly surface state, wet or dry, 85% of the time. From the 18 periods modelled using the coupled model an average absolute fractional bias of 15% for PM10 concentrations was found. Similarly the model predicts the 90'th daily mean percentiles of PMio with an average absolute bias of 19% and an average correlation (R-2) of 0.49. When surface moisture is not included in the modelling then this average correlation is reduced to 0.16, demonstrating the importance of the surface moisture conditions. Tests have been carried out to assess the sensitivity of the model to model parameters and input data. The model provides a useful tool for air quality management and for improving our understanding of non-exhaust traffic emissions.
  •  
2.
  • Denby, B. R., et al. (författare)
  • Road salt emissions : A comparison of measurements and modelling using the NORTRIP road dust emission model
  • 2016
  • Ingår i: Atmospheric Environment. - : Elsevier Ltd. - 1352-2310 .- 1873-2844. ; 141, s. 508-522
  • Tidskriftsartikel (refereegranskat)abstract
    • De-icing of road surfaces is necessary in many countries during winter to improve vehicle traction. Large amounts of salt, most often sodium chloride, are applied every year. Most of this salt is removed through drainage or traffic spray processes but a certain amount may be suspended, after drying of the road surface, into the air and will contribute to the concentration of particulate matter. Though some measurements of salt concentrations are available near roads, the link between road maintenance salting activities and observed concentrations of salt in ambient air is yet to be quantified. In this study the NORTRIP road dust emission model, which estimates the emissions of both dust and salt from the road surface, is applied at five sites in four Nordic countries for ten separate winter periods where daily mean ambient air measurements of salt concentrations are available. The model is capable of reproducing many of the salt emission episodes, both in time and intensity, but also fails on other occasions. The observed mean concentration of salt in PM10, over all ten datasets, is 4.2 μg/m3 and the modelled mean is 2.8 μg/m3, giving a fractional bias of −0.38. The RMSE of the mean concentrations, over all 10 datasets, is 2.9 μg/m3 with an average R2 of 0.28. The mean concentration of salt is similar to the mean exhaust contribution during the winter periods of 2.6 μg/m3. The contribution of salt to the kerbside winter mean PM10 concentration is estimated to increase by 4.1 ± 3.4 μg/m3 for every kg/m2 of salt applied on the road surface during the winter season. Additional sensitivity studies showed that the accurate logging of salt applications is a prerequisite for predicting salt emissions, as well as good quality data on precipitation. It also highlights the need for more simultaneous measurements of salt loading together with ambient air concentrations to help improve model parameterisations of salt and moisture removal processes. © 2016 The Authors
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy