SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nystad Wenche) "

Sökning: WFRF:(Nystad Wenche)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beelen, Rob, et al. (författare)
  • Effects of long-term exposure to air pollution on natural-cause mortality : an analysis of 22 European cohorts within the multicentre ESCAPE project
  • 2014
  • Ingår i: The Lancet. - : Elsevier. - 0140-6736 .- 1474-547X. ; 383:9919, s. 785-795
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Few studies on long-term exposure to air pollution and mortality have been reported from Europe. Within the multicentre European Study of Cohorts for Air Pollution Effects (ESCAPE), we aimed to investigate the association between natural-cause mortality and long-term exposure to several air pollutants.METHODS: We used data from 22 European cohort studies, which created a total study population of 367 251 participants. All cohorts were general population samples, although some were restricted to one sex only. With a strictly standardised protocol, we assessed residential exposure to air pollutants as annual average concentrations of particulate matter (PM) with diameters of less than 2·5 μm (PM2·5), less than 10 μm (PM10), and between 10 μm and 2·5 μm (PMcoarse), PM2.5 absorbance, and annual average concentrations of nitrogen oxides (NO2 and NOx), with land use regression models. We also investigated two traffic intensity variables-traffic intensity on the nearest road (vehicles per day) and total traffic load on all major roads within a 100 m buffer. We did cohort-specific statistical analyses using confounder models with increasing adjustment for confounder variables, and Cox proportional hazards models with a common protocol. We obtained pooled effect estimates through a random-effects meta-analysis.FINDINGS: The total study population consisted of 367 251 participants who contributed 5 118 039 person-years at risk (average follow-up 13·9 years), of whom 29 076 died from a natural cause during follow-up. A significantly increased hazard ratio (HR) for PM2·5 of 1·07 (95% CI 1·02-1·13) per 5 μg/m(3) was recorded. No heterogeneity was noted between individual cohort effect estimates (I(2) p value=0·95). HRs for PM2·5 remained significantly raised even when we included only participants exposed to pollutant concentrations lower than the European annual mean limit value of 25 μg/m(3) (HR 1·06, 95% CI 1·00-1·12) or below 20 μg/m(3) (1·07, 1·01-1·13).INTERPRETATION: Long-term exposure to fine particulate air pollution was associated with natural-cause mortality, even within concentration ranges well below the present European annual mean limit value.FUNDING: European Community's Seventh Framework Program (FP7/2007-2011).
  •  
2.
  • de Hoogh, Kees, et al. (författare)
  • Development of West-European PM2.5 and NO2 land use regression models incorporating satellite-derived and chemical transport modelling data
  • 2016
  • Ingår i: Environmental Research. - 0013-9351 .- 1096-0953. ; 151, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Satellite-derived (SAT) and chemical transport model (CTM) estimates of PM2.5 and NO2 are increasingly used in combination with Land Use Regression (LUR) models. We aimed to compare the contribution of SAT and CTM data to the performance of LUR PM2.5 and NO2 models for Europe. Four sets of models, all including local traffic and land use variables, were compared (LUR without SAT or CTM, with SAT only, with CTM only, and with both SAT and CTM). LUR models were developed using two monitoring data sets: PM2.5 and NO2 ground level measurements from the European Study of Cohorts for Air Pollution Effects (ESCAPE) and from the European AIRBASE network. LUR PM2.5 models including SAT and SAT+CTM explained ~60% of spatial variation in measured PM2.5 concentrations, substantially more than the LUR model without SAT and CTM (adjR(2): 0.33-0.38). For NO2 CTM improved prediction modestly (adjR(2): 0.58) compared to models without SAT and CTM (adjR(2): 0.47-0.51). Both monitoring networks are capable of producing models explaining the spatial variance over a large study area. SAT and CTM estimates of PM2.5 and NO2 significantly improved the performance of high spatial resolution LUR models at the European scale for use in large epidemiological studies.
  •  
3.
  • Merid, Simon Kebede, et al. (författare)
  • Epigenome-wide meta-analysis of blood DNA methylation in newborns and children identifies numerous loci related to gestational age
  • 2020
  • Ingår i: Genome Medicine. - Stockholm : Karolinska Institutet, Dept of Clinical Science and Education, Södersjukhuset. - 1756-994X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Preterm birth and shorter duration of pregnancy are associated with increased morbidity in neonatal and later life. As the epigenome is known to have an important role during fetal development, we investigated associations between gestational age and blood DNA methylation in children. Methods: We performed meta-analysis of Illumina's HumanMethylation450-array associations between gestational age and cord blood DNA methylation in 3648 newborns from 17 cohorts without common pregnancy complications, induced delivery or caesarean section. We also explored associations of gestational age with DNA methylation measured at 4-18 years in additional pediatric cohorts. Follow-up analyses of DNA methylation and gene expression correlations were performed in cord blood. DNA methylation profiles were also explored in tissues relevant for gestational age health effects: fetal brain and lung. Results: We identified 8899 CpGs in cord blood that were associated with gestational age (range 27-42 weeks), at Bonferroni significance, P < 1.06 × 10- 7, of which 3343 were novel. These were annotated to 4966 genes. After restricting findings to at least three significant adjacent CpGs, we identified 1276 CpGs annotated to 325 genes. Results were generally consistent when analyses were restricted to term births. Cord blood findings tended not to persist into childhood and adolescence. Pathway analyses identified enrichment for biological processes critical to embryonic development. Follow-up of identified genes showed correlations between gestational age and DNA methylation levels in fetal brain and lung tissue, as well as correlation with expression levels. Conclusions: We identified numerous CpGs differentially methylated in relation to gestational age at birth that appear to reflect fetal developmental processes across tissues. These findings may contribute to understanding mechanisms linking gestational age to health effects.
  •  
4.
  • Paternoster, Lavinia, et al. (författare)
  • Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis.
  • 2012
  • Ingår i: Nature genetics. - 1546-1718. ; 44:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Atopic dermatitis (AD) is a commonly occurring chronic skin disease with high heritability. Apart from filaggrin (FLG), the genes influencing atopic dermatitis are largely unknown. We conducted a genome-wide association meta-analysis of 5,606 affected individuals and 20,565 controls from 16 population-based cohorts and then examined the ten most strongly associated new susceptibility loci in an additional 5,419 affected individuals and 19,833 controls from 14 studies. Three SNPs reached genome-wide significance in the discovery and replication cohorts combined, including rs479844 upstream of OVOL1 (odds ratio (OR) = 0.88, P = 1.1 × 10(-13)) and rs2164983 near ACTL9 (OR = 1.16, P = 7.1 × 10(-9)), both of which are near genes that have been implicated in epidermal proliferation and differentiation, as well as rs2897442 in KIF3A within the cytokine cluster at 5q31.1 (OR = 1.11, P = 3.8 × 10(-8)). We also replicated association with the FLG locus and with two recently identified association signals at 11q13.5 (rs7927894; P = 0.008) and 20q13.33 (rs6010620; P = 0.002). Our results underline the importance of both epidermal barrier function and immune dysregulation in atopic dermatitis pathogenesis.
  •  
5.
  • Wang, Meng, et al. (författare)
  • Performance of multi-city land use regression models for nitrogen dioxide and fine particles
  • 2014
  • Ingår i: Journal of Environmental Health Perspectives. - : Public Health Services, US Dept of Health and Human Services. - 0091-6765 .- 1552-9924. ; 122:8, s. 843-849
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Land use regression (LUR) models have been developed mostly to explain intraurban variations in air pollution based on often small local monitoring campaigns. Transferability of LUR models from city to city has been investigated, but little is known about the performance of models based on large numbers of monitoring sites covering a large area.OBJECTIVES: We aimed to develop European and regional LUR models and to examine their transferability to areas not used for model development.METHODS: We evaluated LUR models for nitrogen dioxide (NO2) and particulate matter (PM; PM2.5, PM2.5 absorbance) by combining standardized measurement data from 17 (PM) and 23 (NO2) ESCAPE (European Study of Cohorts for Air Pollution Effects) study areas across 14 European countries for PM and NO2. Models were evaluated with cross-validation (CV) and hold-out validation (HV). We investigated the transferability of the models by successively excluding each study area from model building.RESULTS: The European model explained 56% of the concentration variability across all sites for NO2, 86% for PM2.5, and 70% for PM2.5 absorbance. The HV R2s were only slightly lower than the model R2 (NO2, 54%; PM2.5, 80%; PM2.5 absorbance, 70%). The European NO2, PM2.5, and PM2.5 absorbance models explained a median of 59%, 48%, and 70% of within-area variability in individual areas. The transferred models predicted a modest-to-large fraction of variability in areas that were excluded from model building (median R2: NO2, 59%; PM2.5, 42%; PM2.5 absorbance, 67%).CONCLUSIONS: Using a large data set from 23 European study areas, we were able to develop LUR models for NO2 and PM metrics that predicted measurements made at independent sites and areas reasonably well. This finding is useful for assessing exposure in health studies conducted in areas where no measurements were conducted.
  •  
6.
  • Markunas, Christina A., et al. (författare)
  • Maternal Age at Delivery Is Associated with an Epigenetic Signature in Both Newborns and Adults
  • 2016
  • Ingår i: PLOS ONE. - 1932-6203. ; 11:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Offspring of older mothers are at increased risk of adverse birth outcomes, childhood cancers, type 1 diabetes, and neurodevelopmental disorders. The underlying biologic mechanisms for most of these associations remain obscure. One possibility is that maternal aging may produce lasting changes in the epigenetic features of a child's DNA. To test this, we explored the association of mothers' age at pregnancy with methylation in her offspring, using blood samples from 890 Norwegian newborns and measuring DNA methylation at more than 450,000 CpG sites across the genome. We examined replication of a maternal-age finding in an independent group of 1062 Norwegian newborns, and then in 200 US middle-aged women. Older maternal age was significantly associated with reduced methylation at four adjacent CpGs near the 2nd exon of KLHL35 in newborns (p-values ranging from 3x10-6 to 8x10-7). These associations were replicated in the independent set of newborns, and replicated again in women 40 to 60 years after their birth. This study provides the first example of parental age permanently affecting the epigenetic profile of offspring. While the specific functions of the affected gene are unknown, this finding opens the possibility that a mother's age at pregnancy could affect her child's health through epigenetic mechanisms.
  •  
7.
  • Simoni, Marzia, et al. (författare)
  • Total viable molds and fungal DNA in classrooms and association with respiratory health and pulmonary function of European schoolchildren
  • 2011
  • Ingår i: Pediatric Allergy and Immunology. - 0905-6157 .- 1399-3038. ; 22:8, s. 843-852
  • Tidskriftsartikel (refereegranskat)abstract
    • Indoor molds are associated with adverse respiratory effects in children. Although schools are important exposure sources of molds, objective measurements were more often taken in homes. Our aim was to assess indoor molds in schools and related effects on schoolchildren health. The Health Effects of the School Environment study (HESE) included 21 schools (46 classrooms) in Italy, Denmark, Sweden, Norway, and France and 654 schoolchildren (mean age 10 yr). Information on schoolchildren was collected by standardized questionnaires. Measurements of total viable molds (VM, colony-forming units, cfu/m(3) ) and total/specific fungal DNA (cell equivalents, CE/g dust) were taken inside all classrooms in the cold season during normal activities, using the same standardized methodology. Pulmonary function tests were performed on 244 pupils. VM (mean, 320 cfu/m(3) ) and total fungal DNA (geometric mean, 2.2 × 10(5)  ± 2.1 CE/g dust) were detectable in all classrooms. The levels were significantly higher in buildings with mold/dampness problems. VM, but not fungal DNA, were inversely related to ventilation rate. VM exceeded the maximum standard of 300 cfu/m(3) in 33% of the classrooms. In the past 12 months, dry cough at night (34%) and rhinitis (32%) were the mostly reported. Children exposed to VM levels ≥300 cfu/m(3) , compared with those exposed to lower levels, showed higher risk for past year dry cough at night (odds ratio, OR: 3.10, 95% confidence interval, CI: 1.61-5.98) and rhinitis (OR: 2.86, 95% CI: 1.65-4.95), as well as for persistent cough (OR: 3.79, 95% CI: 2.40-5.60). Aspergillus/Penicillium DNA was significantly positively associated with wheeze, and Aspergillus versicolor DNA with wheeze, rhinitis, and cough. There were significant inverse associations of Aspergillus versicolor DNA with forced vitality capacity (FVC) and Streptomyces DNA with both FEV(1) and FVC. In conclusion, indoor VM and fungal DNA were commonly found in monitored European schools and adversely related to respiratory health. Schools should be routinely tested through both culturable and non-culturable methods for global indoor molds' evaluation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy