SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(O'Connell Jeffrey R.) ;pers:(Psaty Bruce M.)"

Sökning: WFRF:(O'Connell Jeffrey R.) > Psaty Bruce M.

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Heid, Iris M, et al. (författare)
  • Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:11, s. 949-960
  • Tidskriftsartikel (refereegranskat)abstract
    • Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10⁻⁹ to P = 1.8 × 10⁻⁴⁰) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10⁻³ to P = 1.2 × 10⁻¹³). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
  •  
2.
  • Palmer, Nicholette D, et al. (författare)
  • A genome-wide association search for type 2 diabetes genes in African Americans.
  • 2012
  • Ingår i: PloS one. - San Francisco : Public Library of Science (PLoS). - 1932-6203. ; 7:1, s. e29202-
  • Tidskriftsartikel (refereegranskat)abstract
    • African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.
  •  
3.
  • Weinstock, Joshua S, et al. (författare)
  • Aberrant activation of TCL1A promotes stem cell expansion in clonal haematopoiesis.
  • 2023
  • Ingår i: Nature. - 1476-4687. ; 616:7958, s. 755-763
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, but this effect was not seen in clones with driver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimental knockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.
  •  
4.
  • Berndt, Sonja I., et al. (författare)
  • Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture
  • 2013
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:5, s. 501-U69
  • Tidskriftsartikel (refereegranskat)abstract
    • Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass index, height and waist-to-hip ratio, as well as clinical classes of obesity, including up to 263,407 individuals of European ancestry, we identified 4 new loci (IGFBP4, H6PD, RSRC1 and PPP2R2A) influencing height detected in the distribution tails and 7 new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3 and ZZZ3) for clinical classes of obesity. Further, we find a large overlap in genetic structure and the distribution of variants between traits based on extremes and the general population and little etiological heterogeneity between obesity subgroups.
  •  
5.
  • Do, Ron, et al. (författare)
  • Common variants associated with plasma triglycerides and risk for coronary artery disease
  • 2013
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:11, s. 1345-
  • Tidskriftsartikel (refereegranskat)abstract
    • Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiological studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P < 5 x 10(-8) for each) to examine the role of triglycerides in risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglyceride levels, and we show that the direction and magnitude of the associations with both traits are factors in determining CAD risk. Second, we consider loci with only a strong association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol (HDL-C) levels, the strength of a polymorphism's effect on triglyceride levels is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD.
  •  
6.
  • Ntalla, Ioanna, et al. (författare)
  • Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N=293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease. On the electrocardiogram, the PR interval reflects conduction from the atria to ventricles and also serves as risk indicator of cardiovascular morbidity and mortality. Here, the authors perform genome-wide meta-analyses for PR interval in multiple ancestries and identify 141 previously unreported genetic loci.
  •  
7.
  • Willer, Cristen J., et al. (författare)
  • Discovery and refinement of loci associated with lipid levels
  • 2013
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:11, s. 1274-1283
  • Tidskriftsartikel (refereegranskat)abstract
    • Levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and total cholesterol are heritable, modifiable risk factors for coronary artery disease. To identify new loci and refine known loci influencing these lipids, we examined 188,577 individuals using genome-wide and custom genotyping arrays. We identify and annotate 157 loci associated with lipid levels at P < 5 x 10(-8), including 62 loci not previously associated with lipid levels in humans. Using dense genotyping in individuals of European, East Asian, South Asian and African ancestry, we narrow association signals in 12 loci. We find that loci associated with blood lipid levels are often associated with cardiovascular and metabolic traits, including coronary artery disease, type 2 diabetes, blood pressure, waist-hip ratio and body mass index. Our results demonstrate the value of using genetic data from individuals of diverse ancestry and provide insights into the biological mechanisms regulating blood lipids to guide future genetic, biological and therapeutic research.
  •  
8.
  • Ried, Janina S., et al. (författare)
  • A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways.
  •  
9.
  • Yang, Jian, et al. (författare)
  • FTO genotype is associated with phenotypic variability of body mass index
  • 2012
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 490:7419, s. 267-272
  • Tidskriftsartikel (refereegranskat)abstract
    • There is evidence across several species for genetic control of phenotypic variation of complex traits(1-4), such that the variance among phenotypes is genotype dependent. Understanding genetic control of variability is important in evolutionary biology, agricultural selection programmes and human medicine, yet for complex traits, no individual genetic variants associated with variance, as opposed to the mean, have been identified. Here we perform a meta-analysis of genome-wide association studies of phenotypic variation using similar to 170,000 samples on height and body mass index (BMI) in human populations. We report evidence that the single nucleotide polymorphism (SNP) rs7202116 at the FTO gene locus, which is known to be associated with obesity (as measured by mean BMI for each rs7202116 genotype)(5-7), is also associated with phenotypic variability. We show that the results are not due to scale effects or other artefacts, and find no other experiment-wise significant evidence for effects on variability, either at loci other than FTO for BMI or at any locus for height. The difference in variance for BMI among individuals with opposite homozygous genotypes at the FTO locus is approximately 7%, corresponding to a difference of similar to 0.5 kilograms in the standard deviation of weight. Our results indicate that genetic variants can be discovered that are associated with variability, and that between-person variability in obesity can partly be explained by the genotype at the FTO locus. The results are consistent with reported FTO by environment interactions for BMI8, possibly mediated by DNA methylation(9,10). Our BMI results for other SNPs and our height results for all SNPs suggest that most genetic variants, including those that influence mean height or mean BMI, are not associated with phenotypic variance, or that their effects on variability are too small to detect even with samples sizes greater than 100,000.
  •  
10.
  • Young, William J., et al. (författare)
  • Genetic analyses of the electrocardiographic QT interval and its components identify additional loci and pathways
  • 2022
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • The QT interval is a heritable electrocardiographic measure associated with arrhythmia risk when prolonged. Here, the authors used a series of genetic analyses to identify genetic loci, pathways, therapeutic targets, and relationships with cardiovascular disease. The QT interval is an electrocardiographic measure representing the sum of ventricular depolarization and repolarization, estimated by QRS duration and JT interval, respectively. QT interval abnormalities are associated with potentially fatal ventricular arrhythmia. Using genome-wide multi-ancestry analyses (>250,000 individuals) we identify 177, 156 and 121 independent loci for QT, JT and QRS, respectively, including a male-specific X-chromosome locus. Using gene-based rare-variant methods, we identify associations with Mendelian disease genes. Enrichments are observed in established pathways for QT and JT, and previously unreported genes indicated in insulin-receptor signalling and cardiac energy metabolism. In contrast for QRS, connective tissue components and processes for cell growth and extracellular matrix interactions are significantly enriched. We demonstrate polygenic risk score associations with atrial fibrillation, conduction disease and sudden cardiac death. Prioritization of druggable genes highlight potential therapeutic targets for arrhythmia. Together, these results substantially advance our understanding of the genetic architecture of ventricular depolarization and repolarization.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18
Typ av publikation
tidskriftsartikel (18)
Typ av innehåll
refereegranskat (18)
Författare/redaktör
Loos, Ruth J F (15)
van Duijn, Cornelia ... (14)
Stefansson, Kari (14)
Wilson, James F. (14)
Campbell, Harry (13)
visa fler...
Rudan, Igor (13)
Thorleifsson, Gudmar (13)
Pramstaller, Peter P ... (13)
Rivadeneira, Fernand ... (13)
Hayward, Caroline (13)
Thorsteinsdottir, Un ... (12)
Rotter, Jerome I. (12)
Hofman, Albert (12)
Kuusisto, Johanna (11)
Laakso, Markku (11)
Boehnke, Michael (11)
Shuldiner, Alan R. (11)
Luan, Jian'an (11)
Harris, Tamara B (11)
Uitterlinden, André ... (11)
Gudnason, Vilmundur (11)
Salomaa, Veikko (10)
Lind, Lars (10)
Wareham, Nicholas J. (10)
Mohlke, Karen L (10)
Mangino, Massimo (10)
Hicks, Andrew A. (10)
Wild, Sarah H (10)
Polasek, Ozren (10)
Perola, Markus (9)
McCarthy, Mark I (9)
Tuomilehto, Jaakko (9)
Oostra, Ben A. (9)
Gieger, Christian (9)
Jarvelin, Marjo-Riit ... (9)
Jula, Antti (8)
Ridker, Paul M. (8)
Chasman, Daniel I. (8)
Hamsten, Anders (8)
Ripatti, Samuli (8)
Abecasis, Goncalo R. (8)
Willemsen, Gonneke (8)
Boomsma, Dorret I. (8)
Barroso, Ines (8)
Metspalu, Andres (8)
Zillikens, M. Carola (8)
Zhao, Jing Hua (8)
Johnson, Toby (8)
Vitart, Veronique (8)
visa färre...
Lärosäte
Uppsala universitet (14)
Lunds universitet (13)
Karolinska Institutet (11)
Göteborgs universitet (7)
Umeå universitet (5)
Högskolan Dalarna (2)
Språk
Engelska (18)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (15)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy