SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Olsson A) ;lar1:(his)"

Sökning: WFRF:(Olsson A) > Högskolan i Skövde

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kariminejad, A., et al. (författare)
  • Truncating CHRNG mutations associated with interfamilial variability of the severity of the Escobar variant of multiple pterygium syndrome
  • 2016
  • Ingår i: Bmc Genetics. - : Springer Science and Business Media LLC. - 1471-2156. ; 17
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: In humans, muscle-specific nicotinergic acetylcholine receptor (AChR) is a transmembrane protein with five different subunits, coded by CHRNA1, CHRNB, CHRND and CHRNG/CHRNE. The gamma subunit of AChR encoded by CHRNG is expressed during early foetal development, whereas in the adult, the. subunit is replaced by a epsilon subunit. Mutations in the CHRNG encoding the embryonal acetylcholine receptor may cause the non-lethal Escobar variant (EVMPS) and lethal form (LMPS) of multiple pterygium syndrome. The MPS is a condition characterised by prenatal growth failure with pterygium and akinesia leading to muscle weakness and severe congenital contractures, as well as scoliosis. Results: Our whole exome sequencing studies have identified one novel and two previously reported homozygous mutations in CHRNG in three families affected by non-lethal EVMPS. The mutations consist of deletion of two nucleotides, cause a frameshift predicted to result in premature termination of the foetally expressed gamma subunit of the AChR. Conclusions: Our data suggest that severity of the phenotype varies significantly both within and between families with MPS and that there is no apparent correlation between mutation position and clinical phenotype. Although individuals with CHRNG mutations can survive, there is an increased frequency of abortions and stillbirth in their families. Furthermore, genetic background and environmental modifiers might be of significance for decisiveness of the lethal spectrum, rather than the state of the mutation per se. Detailed clinical examination of our patients further indicates the changing phenotype from infancy to childhood.
  •  
2.
  • Badam, Tejaswi V. S., et al. (författare)
  • A validated generally applicable approach using the systematic assessment of disease modules by GWAS reveals a multi-omic module strongly associated with risk factors in multiple sclerosis
  • 2021
  • Ingår i: BMC Genomics. - : BioMed Central. - 1471-2164. ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: There exist few, if any, practical guidelines for predictive and falsifiable multi-omic data integration that systematically integrate existing knowledge. Disease modules are popular concepts for interpreting genome-wide studies in medicine but have so far not been systematically evaluated and may lead to corroborating multi-omic modules. Result: We assessed eight module identification methods in 57 previously published expression and methylation studies of 19 diseases using GWAS enrichment analysis. Next, we applied the same strategy for multi-omic integration of 20 datasets of multiple sclerosis (MS), and further validated the resulting module using both GWAS and risk-factor-associated genes from several independent cohorts. Our benchmark of modules showed that in immune-associated diseases modules inferred from clique-based methods were the most enriched for GWAS genes. The multi-omic case study using MS data revealed the robust identification of a module of 220 genes. Strikingly, most genes of the module were differentially methylated upon the action of one or several environmental risk factors in MS (n = 217, P = 10− 47) and were also independently validated for association with five different risk factors of MS, which further stressed the high genetic and epigenetic relevance of the module for MS. Conclusions: We believe our analysis provides a workflow for selecting modules and our benchmark study may help further improvement of disease module methods. Moreover, we also stress that our methodology is generally applicable for combining and assessing the performance of multi-omic approaches for complex diseases. 
  •  
3.
  • Deland, Lily, et al. (författare)
  • Discovery of a rare GKAP1-NTRK2 fusion in a pediatric low-grade glioma, leading to targeted treatment with TRK-inhibitor larotrectinib
  • 2021
  • Ingår i: Cancer Biology & Therapy. - : Taylor & Francis. - 1538-4047 .- 1555-8576. ; 22:3, s. 184-195
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we report a case of an 11-year-old girl with an inoperable tumor in the optic chiasm/hypothalamus, who experienced several tumor progressions despite three lines of chemotherapy treatment. Routine clinical examination classified the tumor as a BRAF-negative pilocytic astrocytoma. Copy-number variation profiling of fresh frozen tumor material identified two duplications in 9q21.32–33 leading to breakpoints within the GKAP1 and NTRK2 genes. RT-PCR Sanger sequencing revealed a GKAP1-NTRK2 exon 10–16 in-frame fusion, generating a putative fusion protein of 658 amino acids with a retained tyrosine kinase (TK) domain. Functional analysis by transient transfection of HEK293 cells showed the GKAP1-NTRK2 fusion protein to be activated through phosphorylation of the TK domain (Tyr705). Subsequently, downstream mediators of the MAPK- and PI3K-signaling pathways were upregulated in GKAP1-NTRK2 cells compared to NTRK2 wild-type; phosphorylated (p)ERK (3.6-fold), pAKT (1.8- fold), and pS6 ribosomal protein (1.4-fold). Following these findings, the patient was enrolled in a clinical trial and treated with the specific TRK-inhibitor larotrectinib, resulting in the arrest of tumor growth. The patient’s condition is currently stable and the quality of life has improved significantly. Our findings highlight the value of comprehensive clinical molecular screening of BRAF-negative pediatric low-grade gliomas, to reveal rare fusions serving as targets for precision therapy. 
  •  
4.
  • Deland, Lily, et al. (författare)
  • Novel TPR::ROS1 Fusion Gene Activates MAPK, PI3K and JAK/STAT Signaling in an Infant-type Pediatric Glioma.
  • 2022
  • Ingår i: Cancer genomics & proteomics. - : Anticancer Research USA Inc.. - 1109-6535 .- 1790-6245. ; 19:6, s. 711-726
  • Tidskriftsartikel (refereegranskat)abstract
    • Although fusion genes involving the proto-oncogene receptor tyrosine kinase ROS1 are rare in pediatric glioma, targeted therapies with small inhibitors are increasingly being approved for histology-agnostic fusion-positive solid tumors.Here, we present a 16-month-old boy, with a brain tumor in the third ventricle. The patient underwent complete resection but relapsed two years after diagnosis and underwent a second operation. The tumor was initially classified as a low-grade glioma (WHO grade 2); however, methylation profiling suggested the newly WHO-recognized type: infant-type hemispheric glioma. To further refine the molecular background, and search for druggable targets, whole genome (WGS) and whole transcriptome (RNA-Seq) sequencing was performed.Concomitant WGS and RNA-Seq analysis revealed several segmental gains and losses resulting in complex structural rearrangements and fusion genes. Among the top-candidates was a novel TPR::ROS1 fusion, for which only the 3' end of ROS1 was expressed in tumor tissue, indicating that wild type ROS1 is not normally expressed in the tissue of origin. Functional analysis by Western blot on protein lysates from transiently transfected HEK293 cells showed the TPR::ROS1 fusion gene to activate the MAPK-, PI3K- and JAK/STAT- pathways through increased phosphorylation of ERK, AKT, STAT and S6. The downstream pathway activation was also confirmed by immunohistochemistry on tumor tissue slides from the patient.We have mapped the activated oncogenic pathways of a novel ROS1-fusion gene and broadened the knowledge of the newly recognized infant-type glioma subtype. The finding facilitates suitable targeted therapies for the patient in case of relapse.
  •  
5.
  • Olsson, Björn E., et al. (författare)
  • Draft genome sequences of strains Salinicola socius SMB35T, Salinicola sp. MH3R3–1 and Chromohalobacter sp. SMB17 from the Verkhnekamsk potash mining region of Russia
  • 2017
  • Ingår i: Standards in Genomic Sciences. - : BioMed Central. - 1944-3277. ; 12:39, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Halomonads are moderately halophilic bacteria that are studied as models of prokaryotic osmoadaptation and sources of enzymes and chemicals for biotechnological applications. Despite the progress in understanding the diversity of these organisms, our ability to explain ecological, metabolic, and biochemical traits of halomonads at the genomic sequence level remains limited. This study addresses this gap by presenting draft genomes of Salinicola socius SMB35T, Salinicola sp. MH3R3-1 and Chromohalobacter sp. SMB17, which were isolated from potash mine tailings in the Verkhnekamsk salt deposit area of Russia. The analysis of these genomes confirmed the importance of ectoines and quaternary amines to the capacity of halomonads to tolerate osmotic stress and adapt to hypersaline environments. The study also revealed that Chromohalobacter and Salinicola share 75-90% of the predicted proteome, but also harbor a set of genus-specific genes, which in Salinicola amounted to approximately 0.5 Mbp. These genus-specific genome segments may contribute to the phenotypic diversity of the Halomonadaceae and the ability of these organisms to adapt to changing environmental conditions and colonize new ecological niches.
  •  
6.
  • Yang, L., et al. (författare)
  • Knockdown of peroxisome proliferator-activated receptor-β induces less differentiation and enhances cell-fibronectinadhesion of colon cancer cells
  • 2010
  • Ingår i: Oncogene. - : Nature publishing group. - 0950-9232 .- 1476-5594. ; 29:4, s. 516-526
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of peroxisome proliferator-activated receptor-/ (PPAR-/) in the pathogenesis of colon cancer remains highly controversial. This study specifically silenced the PPAR- expression in three colon cancer cell lines with different metastatic potentials. Although PPAR-knockdown resulted in more malignant morphological changes, bigger colony sizes and lower carcinoembryonic antigen (CEA) secretion, and enhanced the cell-fibronectin adhesion, cell invasion and migration were unaffected. These effects were stronger in poorly metastatic cell lines compared with highly metastatic ones. Simultaneously, PPAR-knockdown decreased the mRNAs encoding adipocyte differentiation-related protein and liver fatty acid binding protein, and increased the mRNA of ILK, whereas the mRNAs encoding integrin-1 and angiopoietin-like 4 were unchanged. Using immunohistochemistry, we determined that the intensity of PPAR- expression was stronger in rectal cancers with better differentiation than in those with poor differentiation, and was stronger in early-stage tumors than in advanced ones. Together, these findings consistently indicate that PPAR- may facilitate differentiation and inhibit the cell-fibronectin adhesion of colon cancer, having a role as an inhibitor in the carcinogenesis and progression of colorectal cancer. Interestingly PPAR- seems to have a more important role in poorly metastatic cells than in highly metastatic ones.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy