SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Olsson Håkan) ;pers:(Welinder Charlotte)"

Search: WFRF:(Olsson Håkan) > Welinder Charlotte

  • Result 1-10 of 16
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Baldetorp, Bo, et al. (author)
  • Analysis of protein expression in pure cell nuclei populations isolated from human breast cancer tissue by DNA flow cytometric sorting.
  • 2010
  • In: Journal of Proteomics. - : Elsevier BV. - 1874-3919. ; 73, s. 1111-1116
  • Journal article (peer-reviewed)abstract
    • In this study, cell nuclei from aneuploid breast cancer samples were sorted with respect to DNA content into pure diploid and aneuploid fractions using flow cytometry. The nuclear proteins were then separated by one-dimensional gel electrophoresis (1D-PAGE) and differences in protein expression patterns, between diploid and aneuploid nuclei from the same tumours, were compared. Using a combination of peptide finger printing and peptide identification by MALDI-TOF mass spectrometry, we identified proteins and confirmed that the proteins were of nuclear origins. The results in this study add further information to the knowledge about the breast cancer disease complexity and heterogeneity at molecular level. For some of the tumours studied different nuclei protein patterns were obtained, in the diploid respective aneuploid nuclei populations, whilst other tumours did not show these differences.
  •  
2.
  • Betancourt, Lazaro Hiram, et al. (author)
  • Improved survival prognostication of node-positive malignant melanoma patients utilizing shotgun proteomics guided by histopathological characterization and genomic data
  • 2019
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1
  • Journal article (peer-reviewed)abstract
    • Metastatic melanoma is one of the most common deadly cancers, and robust biomarkers are still needed, e.g. to predict survival and treatment efficiency. Here, protein expression analysis of one hundred eleven melanoma lymph node metastases using high resolution mass spectrometry is coupled with in-depth histopathology analysis, clinical data and genomics profiles. This broad view of protein expression allowed to identify novel candidate protein markers that improved prediction of survival in melanoma patients. Some of the prognostic proteins have not been reported in the context of melanoma before, and few of them exhibit unexpected relationship to survival, which likely reflects the limitations of current knowledge on melanoma and shows the potential of proteomics in clinical cancer research.
  •  
3.
  • Betancourt, Lazaro Hiram, et al. (author)
  • The hidden story of heterogeneous B-raf V600E mutation quantitative protein expression in metastatic melanoma—association with clinical outcome and tumor phenotypes
  • 2019
  • In: Cancers. - : MDPI AG. - 2072-6694. ; 11:12
  • Journal article (peer-reviewed)abstract
    • In comparison to other human cancer types, malignant melanoma exhibits the greatest amount of heterogeneity. After DNA-based detection of the BRAF V600E mutation in melanoma patients, targeted inhibitor treatment is the current recommendation. This approach, however, does not take the abundance of the therapeutic target, i.e., the B-raf V600E protein, into consideration. As shown by immunohistochemistry, the protein expression profiles of metastatic melanomas clearly reveal the existence of inter-and intra-tumor variability. Nevertheless, the technique is only semi-quantitative. To quantitate the mutant protein there is a fundamental need for more precise techniques that are aimed at defining the currently non-existent link between the levels of the target protein and subsequent drug efficacy. Using cutting-edge mass spectrometry combined with DNA and mRNA sequencing, the mutated B-raf protein within metastatic tumors was quantitated for the first time. B-raf V600E protein analysis revealed a subjacent layer of heterogeneity for mutation-positive metastatic melanomas. These were characterized into two distinct groups with different tumor morphologies, protein profiles and patient clinical outcomes. This study provides evidence that a higher level of expression in the mutated protein is associated with a more aggressive tumor progression. Our study design, comprised of surgical isolation of tumors, histopathological characterization, tissue biobanking, and protein analysis, may enable the eventual delineation of patient responders/non-responders and subsequent therapy for malignant melanoma.
  •  
4.
  •  
5.
  • Betancourt, Lazaro Hiram, et al. (author)
  • The human melanoma proteome atlas-Defining the molecular pathology
  • 2021
  • In: Clinical and Translational Medicine. - : Wiley. - 2001-1326. ; 11:7, s. 1-20
  • Journal article (peer-reviewed)abstract
    • The MM500 study is an initiative to map the protein levels in malignant melanoma tumor samples, focused on in-depth histopathology coupled to proteome characterization. The protein levels and localization were determined for a broad spectrum of diverse, surgically isolated melanoma tumors originating from multiple body locations. More than 15,500 proteoforms were identified by mass spectrometry, from which chromosomal and subcellular localization was annotated within both primary and metastatic melanoma. The data generated by global proteomic experiments covered 72% of the proteins identified in the recently reported high stringency blueprint of the human proteome. This study contributes to the NIH Cancer Moonshot initiative combining detailed histopathological presentation with the molecular characterization for 505 melanoma tumor samples, localized in 26 organs from 232 patients.
  •  
6.
  • Ekblad, Lars, et al. (author)
  • In-Source Decay Causes Artifacts in SELDI-TOF MS Spectra.
  • 2007
  • In: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 6:4, s. 1609-1614
  • Journal article (peer-reviewed)abstract
    • SELDI-TOF MS is a mass spectrometric technique which has been extensively used for biomarker discovery. In this study, we show that in-source decay is an important source for the generation of additional spectral peaks with this technique, both for pure proteins and proteins in serum samples. Thus, SELDI-TOF MS could be used to gain sequence information from proteins, but the results also question the uncritical use of SELDI-TOF MS as a general method for the detection of biomarkers.
  •  
7.
  • Gil, Jeovanis, et al. (author)
  • Clinical protein science in translational medicine targeting malignant melanoma
  • 2019
  • In: Cell Biology and Toxicology. - : Springer Science and Business Media LLC. - 0742-2091 .- 1573-6822. ; 35:4, s. 293-332
  • Journal article (peer-reviewed)abstract
    • Melanoma of the skin is the sixth most common type of cancer in Europe and accounts for 3.4% of all diagnosed cancers. More alarming is the degree of recurrence that occurs with approximately 20% of patients lethally relapsing following treatment. Malignant melanoma is a highly aggressive skin cancer and metastases rapidly extend to the regional lymph nodes (stage 3) and to distal organs (stage 4). Targeted oncotherapy is one of the standard treatment for progressive stage 4 melanoma, and BRAF inhibitors (e.g. vemurafenib, dabrafenib) combined with MEK inhibitor (e.g. trametinib) can effectively counter BRAFV600E-mutated melanomas. Compared to conventional chemotherapy, targeted BRAFV600E inhibition achieves a significantly higher response rate. After a period of cancer control, however, most responsive patients develop resistance to the therapy and lethal progression. The many underlying factors potentially causing resistance to BRAF inhibitors have been extensively studied. Nevertheless, the remaining unsolved clinical questions necessitate alternative research approaches to address the molecular mechanisms underlying metastatic and treatment-resistant melanoma. In broader terms, proteomics can address clinical questions far beyond the reach of genomics, by measuring, i.e. the relative abundance of protein products, post-translational modifications (PTMs), protein localisation, turnover, protein interactions and protein function. More specifically, proteomic analysis of body fluids and tissues in a given medical and clinical setting can aid in the identification of cancer biomarkers and novel therapeutic targets. Achieving this goal requires the development of a robust and reproducible clinical proteomic platform that encompasses automated biobanking of patient samples, tissue sectioning and histological examination, efficient protein extraction, enzymatic digestion, mass spectrometry–based quantitative protein analysis by label-free or labelling technologies and/or enrichment of peptides with specific PTMs. By combining data from, e.g. phosphoproteomics and acetylomics, the protein expression profiles of different melanoma stages can provide a solid framework for understanding the biology and progression of the disease. When complemented by proteogenomics, customised protein sequence databases generated from patient-specific genomic and transcriptomic data aid in interpreting clinical proteomic biomarker data to provide a deeper and more comprehensive molecular characterisation of cellular functions underlying disease progression. In parallel to a streamlined, patient-centric, clinical proteomic pipeline, mass spectrometry–based imaging can aid in interrogating the spatial distribution of drugs and drug metabolites within tissues at single-cell resolution. These developments are an important advancement in studying drug action and efficacy in vivo and will aid in the development of more effective and safer strategies for the treatment of melanoma. A collaborative effort of gargantuan proportions between academia and healthcare professionals has led to the initiation, establishment and development of a cutting-edge cancer research centre with a specialisation in melanoma and lung cancer. The primary research focus of the European Cancer Moonshot Lund Center is to understand the impact that drugs have on cancer at an individualised and personalised level. Simultaneously, the centre increases awareness of the relentless battle against cancer and attracts global interest in the exceptional research performed at the centre.
  •  
8.
  • Sanchez, Aniel, et al. (author)
  • Novel functional proteins coded by the human genome discovered in metastases of melanoma patients
  • 2020
  • In: Cell Biology and Toxicology. - : Springer Science and Business Media LLC. - 0742-2091 .- 1573-6822. ; 36:3, s. 261-272
  • Journal article (peer-reviewed)abstract
    • In the advanced stages, malignant melanoma (MM) has a very poor prognosis. Due to tremendous efforts in cancer research over the last 10 years, and the introduction of novel therapies such as targeted therapies and immunomodulators, the rather dark horizon of the median survival has dramatically changed from under 1 year to several years. With the advent of proteomics, deep-mining studies can reach low-abundant expression levels. The complexity of the proteome, however, still surpasses the dynamic range capabilities of current analytical techniques. Consequently, many predicted protein products with potential biological functions have not yet been verified in experimental proteomic data. This category of ‘missing proteins’ (MP) is comprised of all proteins that have been predicted but are currently unverified. As part of the initiative launched in 2016 in the USA, the European Cancer Moonshot Center has performed numerous deep proteomics analyses on samples from MM patients. In this study, nine MPs were clearly identified by mass spectrometry in MM metastases. Some MPs significantly correlated with proteins that possess identical PFAM structural domains; and other MPs were significantly associated with cancer-related proteins. This is the first study to our knowledge, where unknown and novel proteins have been annotated in metastatic melanoma tumour tissue.
  •  
9.
  • Sköld, Martin, et al. (author)
  • Regression analysis and modelling of data acquisition for SELDI-TOF mass spectrometry
  • 2007
  • In: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811 .- 1460-2059. ; 23:11, s. 1401-1409
  • Journal article (peer-reviewed)abstract
    • Motivation: Pre-processing of SELDI-TOF mass spectrometry data is currently performed on a largel y ad hoc basis. This makes comparison of results from independent analyses troublesome and does not provide a framework for distinguishing different sources of variation in data. Results: In this article, we consider the task of pooling a large number of single-shot spectra, a task commonly performed automatically by the instrument software. By viewing the underlying statistical problem as one of heteroscedastic linear regression, we provide a framework for introducing robust methods and for dealing with missing data resulting from a limited span of recordable intensity values provided by the instrument. Our framework provides an interpretation of currently used methods as a maximum-likelihood estimator and allows theoretical derivation of its variance. We observe that this variance depends crucially on the total number of ionic species, which can vary considerably between different pooled spectra. This variation in variance can potentially invalidate the results from naive methods of discrimination/classification and we outline appropriate data transformations. Introducing methods from robust statistics did not improve the standard errors of the pooled samples. Imputing missing values however—using the EM algorithm—had a notable effect on the result; for our data, the pooled height of peaks which were frequently truncated increased by up to 30%.
  •  
10.
  • Sugihara, Yutaka, et al. (author)
  • A New Look at Drugs Targeting Malignant Melanoma – An Application for Mass Spectrometry Imaging
  • 2014
  • In: Proteomics. - : Wiley. - 1615-9861 .- 1615-9853. ; 14:17-18, s. 1963-1970
  • Research review (peer-reviewed)abstract
    • Malignant melanoma (MM) patients are being treated with an increasing number of personalized medicine (PM) drugs, several of which are small molecule drugs developed to treat patients with specific disease genotypes and phenotypes. In particular, the clinical application of protein kinase inhibitors (PKI) has been highly effective for certain subsets of MM patients. Vemurafenib, a PKI targeting BRAF mutated protein, has shown significant efficacy in slowing disease progression. In this paper we provide an overview of this new generation of targeted drugs, and demonstrate the first data on localization of personalized medicine drugs within tumor compartments. In this study, we have introduced matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to provide new information on one of the drugs currently used in the PM treatment of MM, vemurafenib. In a proof-of-concept in vitro study, MALDI-MSI was used to identify vemurafenib applied to metastatic lymph nodes tumors of subjects attending the regional hospital network of Southern Sweden. The paper provides evidence of BRAF overexpression in tumors isolated from MM patients and localization of the specific drug targeting BRAF, vemurafenib, using mass spectrometry fragment ion signatures. Our ability to determine drug uptake at the target sites of directed therapy provides important opportunity for increasing our understanding about the mode of action of drug activity within the disease environment.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view