SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ongen Halit) "

Sökning: WFRF:(Ongen Halit)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ehret, Georg B., et al. (författare)
  • Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk
  • 2011
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 478:7367, s. 103-109
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood pressure is a heritable trait(1) influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (>= 140 mm Hg systolic blood pressure or >= 90 mm Hg diastolic blood pressure)(2). Even small increments in blood pressure are associated with an increased risk of cardiovascular events(3). This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.
  •  
2.
  • Lanktree, Matthew B., et al. (författare)
  • Meta-analysis of Dense Genecentric Association Studies Reveals Common and Uncommon Variants Associated with Height
  • 2011
  • Ingår i: American Journal of Human Genetics. - : Cell Press. - 0002-9297 .- 1537-6605. ; 88:1, s. 41443-41443
  • Tidskriftsartikel (refereegranskat)abstract
    • Height is a classic complex trait with common variants in a growing list of genes known to contribute to the phenotype. Using a genecentric genotyping array targeted toward cardiovascular-related loci, comprising 49,320 SNPs across approximately 2000 loci, we evaluated the association of common and uncommon SNPs with adult height in 114,223 individuals from 47 studies and six ethnicities. A total of 64 loci contained a SNP associated with height at array-wide significance (p < 2.4 x 10(-6)), with 42 loci surpassing the conventional genome-wide significance threshold (p < 5 x 10(-8)). Common variants with minor allele frequencies greater than 5% were observed to be associated with height in 37 previously reported loci. In individuals of European ancestry, uncommon SNPs in IL11 and SMAD3, which would not be genotyped with the use of standard genome-wide genotyping arrays, were strongly associated with height (p < 3 x 10(-11)). Conditional analysis within associated regions revealed five additional variants associated with height independent of lead SNPs within the locus, suggesting allelic heterogeneity. Although underpowered to replicate findings from individuals of European ancestry, the direction of effect of associated variants was largely consistent in African American, South Asian, and Hispanic populations. Overall, we show that dense coverage of genes for uncommon SNPs, coupled with large-scale meta-analysis, can successfully identify additional variants associated with a common complex trait.
  •  
3.
  • Peden, John F., et al. (författare)
  • A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease
  • 2011
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 43:4, s. 339-344
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have identified 11 common variants convincingly associated with coronary artery disease (CAD)(1-7), a modest number considering the apparent heritability of CAD(8). All of these variants have been discovered in European populations. We report a meta-analysis of four large genome-wide association studies of CAD, with similar to 575,000 genotyped SNPs in a discovery dataset comprising 15,420 individuals with CAD (cases) (8,424 Europeans and 6,996 South Asians) and 15,062 controls. There was little evidence for ancestry-specific associations, supporting the use of combined analyses. Replication in an independent sample of 21,408 cases and 19,185 controls identified five loci newly associated with CAD (P < 5 x 10(-8) in the combined discovery and replication analysis): LIPA on 10q23, PDGFD on 11q22, ADAMTS7-MORF4L1 on 15q25, a gene rich locus on 7q22 and KIAA1462 on 10p11. The CAD-associated SNP in the PDGFD locus showed tissue-specific cis expression quantitative trait locus effects. These findings implicate new pathways for CAD susceptibility.
  •  
4.
  • Strawbridge, Rona J., et al. (författare)
  • Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 Diabetes
  • 2011
  • Ingår i: Diabetes. - : American Diabetes Association Inc.. - 1939-327X .- 0012-1797. ; 60:10, s. 2624-2634
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired beta-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS-We have conducted a meta-analysis of genome-wide association tests of similar to 2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS-Nine SNPs at eight loci were associated with proinsulin levels (P < 5 x 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC3OA8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 x 10(-4)), improved beta-cell function (P = 1.1 x 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 x 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS-We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis. Diabetes 60:2624-2634, 2011
  •  
5.
  • Wain, Louise V., et al. (författare)
  • Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure
  • 2011
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1546-1718 .- 1061-4036. ; 43:10, s. 122-1005
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans(1-3). We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 x 10(-8) to P = 2.3 x 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP.
  •  
6.
  • Koettgen, Anna, et al. (författare)
  • Genome-wide association analyses identify 18 new loci associated with serum urate concentrations
  • 2013
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 45:2, s. 145-154
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from >140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with serum urate concentrations (18 new regions in or near TRIM46, INHBB, SEMBT1, TMEM171, VEGFA, BAZ1B, PRKAG2, STC1, HNF4G, A1CF, ATXN2, UBE2Q2, IGF1R, NFAT5, MAF, HLF, ACVR1B-ACVRL1 and B3GNT4). Associations for many of the loci were of similar magnitude in individuals of non-European ancestry. We further characterized these loci for associations with gout, transcript expression and the fractional excretion of urate. Network analyses implicate the inhibins-activins signaling pathways and glucose metabolism in systemic urate control. New candidate genes for serum urate concentration highlight the importance of metabolic control of urate production and excretion, which may have implications for the treatment and prevention of gout.
  •  
7.
  • Lappalainen, Tuuli, et al. (författare)
  • Transcriptome and genome sequencing uncovers functional variation in humans
  • 2013
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 501:7468, s. 506-511
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome sequencing projects are discovering millions of genetic variants in humans, and interpretation of their functional effects is essential for understanding the genetic basis of variation in human traits. Here we report sequencing and deep analysis of messenger RNA and microRNA from lymphoblastoid cell lines of 462 individuals from the 1000 Genomes Project-the first uniformly processed high-throughput RNA-sequencing data from multiple human populations with high-quality genome sequences. We discover extremely widespread genetic variation affecting the regulation of most genes, with transcript structure and expression level variation being equally common but genetically largely independent. Our characterization of causal regulatory variation sheds light on the cellular mechanisms of regulatory and loss-of-function variation, and allows us to infer putative causal variants for dozens of disease-associated loci. Altogether, this study provides a deep understanding of the cellular mechanisms of transcriptome variation and of the landscape of functional variants in the human genome.
  •  
8.
  • Lotta, Luca A., et al. (författare)
  • Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance
  • 2017
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 49:1, s. 17-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin resistance is a key mediator of obesity-related cardiometabolic disease, yet the mechanisms underlying this link remain obscure. Using an integrative genomic approach, we identify 53 genomic regions associated with insulin resistance phenotypes (higher fasting insulin levels adjusted for BMI, lower HDL cholesterol levels and higher triglyceride levels) and provide evidence that their link with higher cardiometabolic risk is underpinned by an association with lower adipose mass in peripheral compartments. Using these 53 loci, we show a polygenic contribution to familial partial lipodystrophy type 1, a severe form of insulin resistance, and highlight shared molecular mechanisms in common/mild and rare/severe insulin resistance. Population-level genetic analyses combined with experiments in cellular models implicate CCDC92, DNAH10 and L3MBTL3 as previously unrecognized molecules influencing adipocyte differentiation. Our findings support the notion that limited storage capacity of peripheral adipose tissue is an important etiological component in insulin-resistant cardiometabolic disease and highlight genes and mechanisms underpinning this link.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy