SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Orndahl E) "

Sökning: WFRF:(Orndahl E)

  • Resultat 1-10 av 12
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ferreira, Mjv, et al. (författare)
  • Poster Session 3 : Tuesday 5 May 2015, 08
  • 2015
  • Ingår i: European Heart Journal Cardiovascular Imaging. - 2047-2404 .- 2047-2412. ; 16 Suppl 1
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Macfarlane, M. D., et al. (författare)
  • Shape abnormalities of the caudate nucleus correlate with poorer gait and balance: Results from a subset of the ladis study
  • 2015
  • Ingår i: The American journal of geriatric psychiatry. - 1064-7481. ; 23:1, s. 59-U90
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Functional deficits seen in several neurodegenerative disorders have been linked with dysfunction in frontostriatal circuits and with associated shape alterations in striatal structures. The severity of visible white matter hyperintensities (WMHs) on magnetic resonance imaging has been found to correlate with poorer performance on measures of gait and balance. This study aimed to determine whether striatal volume and shape changes were correlated with gait dysfunction. Methods Magnetic resonance imaging scans and clinical gait/balance data (scores from the Short Physical Performance Battery [SPPB]) were sourced from 66 subjects in the previously published LADIS trial, performed in nondisabled individuals older than age 65 years with WMHs at study entry. Data were obtained at study entry and at 3-year follow-up. Caudate nuclei and putamina were manually traced using a previously published method and volumes calculated. The relationships between volume and physical performance on the SPPB were investigated with shape analysis using the spherical harmonic shape description toolkit. Results There was no correlation between the severity of WMHs and striatal volumes. Caudate nuclei volume correlated with performance on the SPPB at baseline but not at follow-up, with subsequent shape analysis showing left caudate changes occurred in areas corresponding to inputs of the dorsolateral prefrontal, premotor, and motor cortex. There was no correlation between putamen volumes and performance on the SPPB. Conclusion Disruption in frontostriatal circuits may play a role in mediating poorer physical performance in individuals with WMHs. Striatal volume and shape changes may be suitable biomarkers for functional changes in this population. © 2015 American Association for Geriatric Psychiatry.
  •  
3.
  • Lindberg, Olof, et al. (författare)
  • Hippocampal Shape Analysis in Alzheimer's Disease and Frontotemporal Lobar Degeneration Subtypes
  • 2012
  • Ingår i: Journal of Alzheimer's Disease. - 1387-2877 .- 1875-8908. ; 30:2, s. 355-365
  • Tidskriftsartikel (refereegranskat)abstract
    • Hippocampal pathology is central to Alzheimer's disease (AD) and other forms of dementia such as frontotemporal lobar degeneration (FTLD). Autopsy studies have shown that certain hippocampal subfields are more vulnerable than others to AD and FTLD pathology, in particular the subiculum and cornu ammonis 1 (CA1). We conducted shape analysis of hippocampi segmented from structural T1 MRI images on clinically diagnosed dementia patients and controls. The subjects included 19 AD and 35 FTLD patients [13 frontotemporal dementia (FTD), 13 semantic dementia (SD), and 9 progressive nonfluent aphasia (PNFA)] and 21 controls. Compared to controls, SD displayed severe atrophy of the whole left hippocampus. PNFA and FTD also displayed atrophy on the left side, restricted to the hippocampal head in FTD. Finally, AD displayed most atrophy in left hippocampal body with relative sparing of the hippocampal head. Consistent with neuropathological studies, most atrophic deformation was found in CA1 and subiculum areas in FTLD and AD.
  •  
4.
  •  
5.
  • Looi, JC, et al. (författare)
  • Putaminal volume in frontotemporal lobar degeneration and Alzheimer disease: differential volumes in dementia subtypes and controls
  • 2009
  • Ingår i: American Journal of Neuroradiology. - 0195-6108 .- 1936-959X. ; 30:8, s. 1552-1560
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND PURPOSE: Frontostriatal (including the putamen) circuit-mediated cognitive dysfunction has been implicated in frontotemporal lobar degeneration (FTLD), but not in Alzheimer disease (AD) or healthy aging. We sought to assess putaminal volume as a measure of the structural basis of relative frontostriatal dysfunction in these groups. MATERIALS AND METHODS: We measured putaminal volume in FTLD subtypes: frontotemporal dementia (FTD, n = 12), semantic dementia (SD, n = 13), and progressive nonfluent aphasia (PNFA, n = 9) in comparison with healthy controls (n = 25) and patients with AD (n = 18). Diagnoses were based on accepted clinical criteria. We conducted manual volume measurement of the putamen blinded to the diagnosis on T1 brain MR imaging by using a standardized protocol. RESULTS: Paired t tests (P < .05) showed that the left putaminal volume was significantly larger than the right in all groups combined. Multivariate analysis of covariance with a Bonferroni correction was used to assess statistical significance among the subject groups (AD, FTD, SD, PNFA, and controls) as independent variables and right/left putaminal volumes as dependent variables (covariates, age and intracranial volume; P < .05). The right putamen in FTD was significantly smaller than in AD and controls; whereas in SD, it was smaller compared with controls with a trend toward being smaller than in AD. There was also a trend toward the putamen in the PNFA being smaller than that in controls and in patients with AD. Across the groups, there was a positive partial correlation between putaminal volume and Mini-Mental State Examination (MMSE). CONCLUSIONS: Right putaminal volume was significantly smaller in FTD, the FTLD subtype with the greatest expected frontostriatal dysfunction; whereas in SD and PNFA, it showed a trend towards being smaller, consistent with expectation, compared to controls and AD; and in SD, compared with AD and controls. Putaminal volume weakly correlated with MMSE.
  •  
6.
  •  
7.
  • Ronnback, J., et al. (författare)
  • Host galaxies of intermediate redshift radio-loud and radio-quiet quasars
  • 1996
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 283:1, s. 282-296296
  • Tidskriftsartikel (refereegranskat)abstract
    • In a search for host galaxies associated with quasars, the authors present results from deep CCD imaging using the European Southern Observatory 3.5-m New Technology Telescope. Altogether 21 targets, 12 radio-loud and nine radio-quiet quasars, were observed in R, and additional V and Gunn i images were collected for a subgroup of these. The quasar redshifts are between 0.4 and 0.8, a range largely unexplored in previous studies. At these redshifts the R band corresponds to a rest-frame wavelength between 4600 and 3600 Aring. Thus, the authors are primarily probing the light from young stellar components of the presumed host galaxies. To separate out the light originating from the host object the authors remove the quasar contribution by scaling the point spread function (PSF). The PSF is a combination of an empirical PSF model, derived from stars lying in the same field as the quasars (used for the core of the PSF), and an analytical model for the wings of the PSF. After PSF subtraction of the QSO image the authors identify extended residual objects in 17 targets (nine in radio-loud and eight in radio-quiet quasars), of which a few are only marginal detections. These objects are large and luminous and their colours are relatively blue. Their V-R colours are consistent with a stellar population typical of late-type spirals and irregular galaxies. The blue colours could be caused by recent star formation events or by scattering of the QSO light
  •  
8.
  •  
9.
  • Looi, Jefferey Chee Leong, et al. (författare)
  • Shape analysis of the neostriatum in frontotemporal lobar degeneration, Alzheimer's disease, and controls
  • 2010
  • Ingår i: NeuroImage. - 1053-8119 .- 1095-9572. ; 51:3, s. 970-986
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and purpose: Frontostriatal circuit mediated cognitive dysfunction has been implicated in frontotemporal lobar degeneration (FTLD), but not Alzheimer's disease, or healthy aging. We measured the neostriatum (caudate nucleus and putamen) volume in FTLD (n=34), in comparison with controls (n=27) and Alzheimer's disease (AD, n=19) subjects. Methods: Diagnoses were based on international consensus criteria. Manual bilateral segmentation of the caudate nucleus and putamen was conducted blind to diagnosis by a single analyst, on MRI scans using a standardized protocol. Intra-cranial volume was calculated via a stereological point counting technique and was used for scaling the shape analysis. The manual segmentation binaries were analyzed using UNC Shape Analysis tools (University of North Carolina) to perform comparisons among FTLD, AD, and controls for global shape, local p-value significance maps, and mean magnitude of shape displacement. Results: Shape analysis revealed that there was significant shape difference between FTLD, AD, and controls, consistent with the predicted frontostriatal dysfunction and of significant magnitude, as measured by displacement maps. There was a lateralized difference in shape for the left caudate for FTLD compared to AD; non-specific global atrophy in AD compared to controls; while FTLD showed a more specific pattern in regions relaying fronto- and corticostriatal circuits. Conclusions: Shape analysis shows regional specificity of atrophy, manifest as shape deflation, with implications for frontostriatal and corticostriatal motoric circuits, in FTLD, AD, and controls.
  •  
10.
  • Looi, Jeffrey Chee Leong, et al. (författare)
  • Shape analysis of the neostriatum in subtypes of frontotemporal lobar degeneration : neuroanatomically significant regional morphologic change
  • 2011
  • Ingår i: Psychiatry Research. - 0925-4927 .- 1872-7506. ; 191:2, s. 98-111
  • Tidskriftsartikel (refereegranskat)abstract
    • Frontostriatal circuit mediated cognitive dysfunction has been implicated in frontotemporal lobar degeneration (FTLD) and may differ across subtypes of FTLD. We manually segmented the neostriatum (caudate nucleus and putamen) in FTLD subtypes: behavioral variant frontotemporal dementia, FTD, n=12; semantic dementia, SD, n=13; and progressive non-fluent aphasia, PNFA, n=9); in comparison with controls (n=27). Diagnoses were based on international consensus criteria. Manual bilateral segmentation of the caudate nucleus and putamen was conducted blind to diagnosis by a single analyst, on MRI scans using a standardized protocol. Intracranial volume was calculated via a stereological point counting technique and was used for normalizing the shape analysis. Segmented binaries were analyzed using the Spherical Harmonic (SPHARM) Shape Analysis tools (University of North Carolina) to perform comparisons between FTLD subtypes and controls for global shape difference, local significance maps and mean magnitude maps of shape displacement. Shape analysis revealed that there was significant shape difference between FTLD subtypes and controls, consistent with the predicted frontostriatal dysfunction and of significant magnitude, as measured by displacement maps. These differences were not significant for SD compared to controls; lesser for PNFA compared to controls; whilst FTD showed a more specific pattern in regions relaying fronto- and corticostriatal circuits. Shape analysis shows regional specificity of atrophy, manifest as shape deflation, with a differential between FTLD subtypes, compared to controls.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
  • [1]2Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy