SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Padyukov Leonid) ;pers:(Eloranta Maija Leena)"

Sökning: WFRF:(Padyukov Leonid) > Eloranta Maija Leena

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carlsson Almlöf, Jonas, et al. (författare)
  • Novel risk genes for systemic lupus erythematosus predicted by random forest classification
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have identified risk loci for SLE, but a large proportion of the genetic contribution to SLE still remains unexplained. To detect novel risk genes, and to predict an individual's SLE risk we designed a random forest classifier using SNP genotype data generated on the "Immunochip" from 1,160 patients with SLE and 2,711 controls. Using gene importance scores defined by the random forest classifier, we identified 15 potential novel risk genes for SLE. Of them 12 are associated with other autoimmune diseases than SLE, whereas three genes (ZNF804A, CDK1, and MANF) have not previously been associated with autoimmunity. Random forest classification also allowed prediction of patients at risk for lupus nephritis with an area under the curve of 0.94. By allele-specific gene expression analysis we detected cis-regulatory SNPs that affect the expression levels of six of the top 40 genes designed by the random forest analysis, indicating a regulatory role for the identified risk variants. The 40 top genes from the prediction were overrepresented for differential expression in B and T cells according to RNA-sequencing of samples from five healthy donors, with more frequent over-expression in B cells compared to T cells.
  •  
2.
  • Folkersen, Lasse, et al. (författare)
  • Integration of known DNA, RNA and protein biomarkers provides prediction of anti-TNF response in rheumatoid arthritis : results from the COMBINE study.
  • 2016
  • Ingår i: Molecular Medicine. - : Springer Science and Business Media LLC. - 1076-1551 .- 1528-3658. ; 22, s. 322-328
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: In rheumatoid arthritis (RA) several recent efforts have sought to discover means of predicting which patients would benefit from treatment. However, results have been discrepant with few successful replications. Our objective was to build a biobank with DNA, RNA and protein measurements to test the claim that the current state-of-the-art precision medicine will benefit RA patients.METHODS: We collected 451 blood samples from 61 healthy individuals and 185 RA patients initiating treatment, before treatment initiation and at a 3 month follow-up time. All samples were subjected to high-throughput RNA sequencing, DNA genotyping, extensive proteomics and flow cytometry measurements, as well as comprehensive clinical phenotyping. Literature review identified 2 proteins, 52 single-nucleotide polymorphisms (SNPs) and 72 gene-expression biomarkers that had previously been proposed as predictors of TNF inhibitor response (∆DAS28-CRP).RESULTS: From these published TNFi biomarkers we found that 2 protein, 2 SNP and 8 mRNA biomarkers could be replicated in the 59 TNF initiating patients. Combining these replicated biomarkers into a single signature we found that we could explain 51% of the variation in ∆DAS28-CRP. This corresponds to a sensitivity of 0.73 and specificity of 0.78 for the prediction of three month ∆DAS28-CRP better than -1.2.CONCLUSIONS: The COMBINE biobank is currently the largest collection of multi-omics data from RA patients with high potential for discovery and replication. Taking advantage of this we surveyed the current state-of-the-art of drug-response stratification in RA, and identified a small set of previously published biomarkers available in peripheral blood which predicts clinical response to TNF blockade in this independent cohort.
  •  
3.
  • Houtman, Miranda, et al. (författare)
  • T cells are influenced by a long non-coding RNA in the autoimmune associated PTPN2 locus
  • 2018
  • Ingår i: Journal of Autoimmunity. - : ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD. - 0896-8411 .- 1095-9157. ; 90, s. 28-38
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-coding SNPs in the protein tyrosine phosphatase non-receptor type 2 (PTPN2) locus have been linked with several autoimmune diseases, including rheumatoid arthritis, type I diabetes, and inflammatory bowel disease. However, the functional consequences of these SNPs are poorly characterized. Herein, we show in blood cells that SNPs in the PTPN2 locus are highly correlated with DNA methylation levels at four CpG sites downstream of PTPN2 and expression levels of the long non-coding RNA (IncRNA) LINC01882 downstream of these CpG sites. We observed that LINC01882 is mainly expressed in T cells and that anti-CD3/CD28 activated naive CD4(+) T cells downregulate the expression of LINC01882. RNA sequencing analysis of LINC01882 knockdown in Jurkat T cells, using a combination of antisense oligo-nucleotides and RNA interference, revealed the upregulation of the transcription factor ZEB1 and kinase MAP2K4, both involved in IL-2 regulation. Overall, our data suggests the involvement of LINC01882 in T cell activation and hints towards an auxiliary role of these non-coding SNPs in autoimmunity associated with the PTPN2 locus. 
  •  
4.
  • Imgenberg-Kreuz, Juliana, et al. (författare)
  • DNA methylation mapping identifies gene regulatory effects in patients with systemic lupus erythematosus
  • 2018
  • Ingår i: Annals of the Rheumatic Diseases. - : BMJ. - 0003-4967 .- 1468-2060. ; 77:5, s. 736-743
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Systemic lupus erythematosus (SLE) is a chronic autoimmune condition with heterogeneous presentation and complex aetiology where DNA methylation changes are emerging as a contributing factor. In order to discover novel epigenetic associations and investigate their relationship to genetic risk for SLE, we analysed DNA methylation profiles in a large collection of patients with SLE and healthy individuals.Methods: DNA extracted from blood from 548 patients with SLE and 587 healthy controls were analysed on the Illumina HumanMethylation 450 k BeadChip, which targets 485 000 CpG sites across the genome. Single nucleotide polymorphism (SNP) genotype data for 196 524 SNPs on the Illumina ImmunoChip from the same individuals were utilised for methylation quantitative trait loci (cis-meQTLs) analyses.Results: We identified and replicated differentially methylated CpGs (DMCs) in SLE at 7245 CpG sites in the genome. The largest methylation differences were observed at type I interferon-regulated genes which exhibited decreased methylation in SLE. We mapped cis-meQTLs and identified genetic regulation of methylation levels at 466 of the DMCs in SLE. The meQTLs for DMCs in SLE were enriched for genetic association to SLE, and included seven SLE genome-wide association study (GWAS) loci: PTPRC (CD45), MHC-class III, UHRF1BP1, IRF5, IRF7, IKZF3 and UBE2L3. In addition, we observed association between genotype and variance of methylation at 20 DMCs in SLE, including at the HLA-DQB2 locus.Conclusions: Our results suggest that several of the genetic risk variants for SLE may exert their influence on the phenotype through alteration of DNA methylation levels at regulatory regions of target genes.
  •  
5.
  •  
6.
  •  
7.
  • Sandling, Johanna K., et al. (författare)
  • A candidate gene study of the type I interferon pathway implicates IKBKE and IL8 as risk loci for SLE
  • 2011
  • Ingår i: European Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1018-4813 .- 1476-5438. ; 19:4, s. 479-484
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease in which the type I interferon pathway has a crucial role. We have previously shown that three genes in this pathway, IRF5, TYK2 and STAT4, are strongly associated with risk for SLE. Here, we investigated 78 genes involved in the type I interferon pathway to identify additional SLE susceptibility loci. First, we genotyped 896 single-nucleotide polymorphisms in these 78 genes and 14 other candidate genes in 482 Swedish SLE patients and 536 controls. Genes with P<0.01 in the initial screen were then followed up in 344 additional Swedish patients and 1299 controls. SNPs in the IKBKE, TANK, STAT1, IL8 and TRAF6 genes gave nominal signals of association with SLE in this extended Swedish cohort. To replicate these findings we extracted data from a genomewide association study on SLE performed in a US cohort. Combined analysis of the Swedish and US data, comprising a total of 2136 cases and 9694 controls, implicates IKBKE and IL8 as SLE susceptibility loci (P(meta)=0.00010 and P(meta)=0.00040, respectively). STAT1 was also associated with SLE in this cohort (P(meta)=3.3 × 10(-5)), but this association signal appears to be dependent of that previously reported for the neighbouring STAT4 gene. Our study suggests additional genes from the type I interferon system in SLE, and highlights genes in this pathway for further functional analysis.
  •  
8.
  •  
9.
  • Sandling, Johanna K., et al. (författare)
  • Molecular pathways in patients with systemic lupus erythematosus revealed by gene-centred DNA sequencing
  • 2021
  • Ingår i: Annals of the Rheumatic Diseases. - : BMJ. - 0003-4967 .- 1468-2060. ; 80:1, s. 109-117
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Systemic lupus erythematosus (SLE) is an autoimmune disease with extensive heterogeneity in disease presentation between patients, which is likely due to an underlying molecular diversity. Here, we aimed at elucidating the genetic aetiology of SLE from the immunity pathway level to the single variant level, and stratify patients with SLE into distinguishable molecular subgroups, which could inform treatment choices in SLE. Methods: We undertook a pathway-centred approach, using sequencing of immunological pathway genes. Altogether 1832 candidate genes were analysed in 958 Swedish patients with SLE and 1026 healthy individuals. Aggregate and single variant association testing was performed, and we generated pathway polygenic risk scores (PRS). Results: We identified two main independent pathways involved in SLE susceptibility: T lymphocyte differentiation and innate immunity, characterised by HLA and interferon, respectively. Pathway PRS defined pathways in individual patients, who on average were positive for seven pathways. We found that SLE organ damage was more pronounced in patients positive for the T or B cell receptor signalling pathways. Further, pathway PRS-based clustering allowed stratification of patients into four groups with different risk score profiles. Studying sets of genes with priors for involvement in SLE, we observed an aggregate common variant contribution to SLE at genes previously reported for monogenic SLE as well as at interferonopathy genes. Conclusions: Our results show that pathway risk scores have the potential to stratify patients with SLE beyond clinical manifestations into molecular subsets, which may have implications for clinical follow-up and therapy selection.
  •  
10.
  • Wang, Chuan, et al. (författare)
  • Contribution of IKBKE and IFIH1 gene variants to SLE susceptibility
  • 2013
  • Ingår i: Genes and Immunity. - : Springer Science and Business Media LLC. - 1466-4879 .- 1476-5470. ; 14:4, s. 217-222
  • Tidskriftsartikel (refereegranskat)abstract
    • The type I interferon system genes IKBKE and IFIH1 are associated with the risk of systemic lupus erythematosus (SLE). To identify the sequence variants that are able to account for the disease association, we resequenced the genes IKBKE and IFIH1. Eighty-six single-nucleotide variants (SNVs) with potentially functional effect or differences in allele frequencies between patients and controls determined by sequencing were further genotyped in 1140 SLE patients and 2060 controls. In addition, 108 imputed sequence variants in IKBKE and IFIH1 were included in the association analysis. Ten IKBKE SNVs and three IFIH1 SNVs were associated with SLE. The SNVs rs1539241 and rs12142086 tagged two independent association signals in IKBKE, and the haplotype carrying their risk alleles showed an odds ratio of 1.68 (P-value=1.0 × 10−5). The risk allele of rs12142086 affects the binding of splicing factor 1 in vitro and could thus influence its transcriptional regulatory function. Two independent association signals were also detected in IFIH1, which were tagged by a low-frequency SNV rs78456138 and a missense SNV rs3747517. Their joint effect is protective against SLE (odds ratio=0.56; P-value=6.6 × 10−3). In conclusion, we have identified new SLE-associated sequence variants in IKBKE and IFIH1, and proposed functional hypotheses for the association signals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11
Typ av publikation
tidskriftsartikel (9)
annan publikation (2)
Typ av innehåll
refereegranskat (8)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Rönnblom, Lars (11)
Padyukov, Leonid (11)
Gunnarsson, Iva (9)
Sandling, Johanna K. (9)
Svenungsson, Elisabe ... (8)
visa fler...
Nordmark, Gunnel (8)
Jönsen, Andreas (7)
Rantapää-Dahlqvist, ... (6)
Syvänen, Ann-Christi ... (5)
Truedsson, Lennart (4)
Sturfelt, Gunnar (4)
Leonard, Dag, 1975- (4)
Wang, Chuan (4)
Sjöwall, Christopher (4)
Bengtsson, Anders A. (4)
Syvänen, Ann-Christi ... (4)
Imgenberg-Kreuz, Jul ... (4)
Bengtsson, Anders (3)
Criswell, Lindsey A. (3)
Tandre, Karolina (2)
Sigurdsson, Snaevar (2)
Eriksson, Catharina (2)
Ahlford, Annika (2)
Hamsten, Anders (2)
Almlöf, Jonas Carlss ... (2)
Malmström, Vivianne (2)
Berg, Louise (1)
Alexsson, Andrei (1)
Kozyrev, Sergey V. (1)
Farias, Fabiana H. G ... (1)
Dahlqvist, Johanna, ... (1)
Andersson, Göran (1)
Lindblad-Toh, Kersti ... (1)
Kere, Juha (1)
Lie, Benedicte A (1)
Carlsson Almlöf, Jon ... (1)
Klareskog, Lars (1)
Sylwan, Lina (1)
Diaz-Gallo, Lina-Mar ... (1)
Chemin, Karine (1)
Folkersen, Lasse (1)
Brunak, Søren (1)
Jacobsen, Søren (1)
Sundström, Yvonne (1)
Schepis, Danika (1)
Uebe, Steffen (1)
Omdal, Roald (1)
Jonsson, Roland (1)
Hultin-Rosenberg, Li ... (1)
visa färre...
Lärosäte
Uppsala universitet (11)
Karolinska Institutet (9)
Umeå universitet (6)
Lunds universitet (6)
Linköpings universitet (5)
Sveriges Lantbruksuniversitet (2)
Språk
Engelska (11)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (10)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy