SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Paetzold M.) ;conttype:(refereed)"

Sökning: WFRF:(Paetzold M.) > Refereegranskat

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Coustenis, A., et al. (författare)
  • TandEM : Titan and Enceladus mission
  • 2009
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 23:3, s. 893-946
  • Tidskriftsartikel (refereegranskat)abstract
    • TandEM was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini-Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (MontgolfiSre) and possibly several landing probes to be delivered through the atmosphere.
  •  
2.
  • Kueppers, Michael, et al. (författare)
  • Triple F-a comet nucleus sample return mission
  • 2009
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 23:3, s. 809-847
  • Tidskriftsartikel (refereegranskat)abstract
    • The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA's Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three sample cores of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.
  •  
3.
  • Jacobsson, Jesper, 1984-, et al. (författare)
  • An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles
  • 2022
  • Ingår i: Nature Energy. - : Springer Nature. - 2058-7546. ; 7:1, s. 107-115
  • Tidskriftsartikel (refereegranskat)abstract
    • Large datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42,400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences. 
  •  
4.
  • Esposito, M., et al. (författare)
  • HD 219666 b: a hot-Neptune from TESS Sector 1
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 623:623
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the confirmation and mass determination of a transiting planet orbiting the old and inactive G7 dwarf star HD219666 (M-star = 0.92 +/- 0.03 M-circle dot, R-star = 1.03 +/- 0.03 R-circle dot, tau(star) = 10 +/- 2 Gyr). With a mass of M-b = 16.6 +/- 1.3 M-circle plus, a radius of R-b = 4.71 +/- 0.17 R-circle plus, and an orbital period of P-orb similar or equal to 6 days, HD219666 b is a new member of a rare class of exoplanets: the hot-Neptunes. The Transiting Exoplanet Survey Satellite (TESS) observed HD219666 (also known as TOI-118) in its Sector 1 and the light curve shows four transit-like events, equally spaced in time. We confirmed the planetary nature of the candidate by gathering precise radial-velocity measurements with the High Accuracy Radial velocity Planet Searcher (HARPS) at ESO 3.6 m. We used the co-added HARPS spectrum to derive the host star fundamental parameters (T-eff = 5527 +/- 65 K, log g(star) = 4.40 +/- 0.11 (cgs), [Fe/H] = 0.04 +/- 0.04 dex, log R-HK' = -5.07 +/- 0.03), as well as the abundances of many volatile and refractory elements. The host star brightness (V = 9.9) makes it suitable for further characterisation by means of in-transit spectroscopy. The determination of the planet orbital obliquity, along with the atmospheric metal-to-hydrogen content and thermal structure could provide us with important clues on the formation mechanisms of this class of objects.
  •  
5.
  • Sierks, H., et al. (författare)
  • Images of Asteroid 21 Lutetia : A Remnant Planetesimal from the Early Solar System
  • 2011
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 334:6055, s. 487-490
  • Tidskriftsartikel (refereegranskat)abstract
    • Images obtained by the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) cameras onboard the Rosetta spacecraft reveal that asteroid 21 Lutetia has a complex geology and one of the highest asteroid densities measured so far, 3.4 +/- 0.3 grams per cubic centimeter. The north pole region is covered by a thick layer of regolith, which is seen to flow in major landslides associated with albedo variation. Its geologically complex surface, ancient surface age, and high density suggest that Lutetia is most likely a primordial planetesimal. This contrasts with smaller asteroids visited by previous spacecraft, which are probably shattered bodies, fragments of larger parents, or reaccumulated rubble piles.
  •  
6.
  • Carleo, Ilaria, et al. (författare)
  • The Multiplanet System TOI-421*
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 160:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V = 9.9) G9 dwarf star in a visual binary system observed by the Transiting Exoplanet Survey Satellite (TESS) space mission in Sectors 5 and 6. We performed ground-based follow-up observations-comprised of Las Cumbres Observatory Global Telescope transit photometry, NIRC2 adaptive optics imaging, and FIbre-fed Echelle Spectrograph, CORALIE, High Accuracy Radial velocity Planet Searcher, High Resolution echelle Spectrometer, and Planet Finder Spectrograph high-precision Doppler measurements-and confirmed the planetary nature of the 16 day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of five days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421 b, has an orbital period of P-b = 5.19672 +/- 0.00049 days, a mass of M-b = 7.17 +/- 0.66 M-circle plus, and a radius of R-b = R-circle plus, whereas the outer warm Neptune, TOI-421 c, has a period of P-c = 16.06819 +/- 0.00035 days, a mass of M-c = 16.42(-1.04)(+1.06)M(circle plus), a radius of R-c = 5.09(-0.15)(+0.16)R(circle plus), and a density of rho(c) = 0.685(-0.072)(+0.080) cm(-3). With its characteristics, the outer planet (rho(c) = 0.685(-0.0072)(+0.080) cm(-3)) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421 b and TOI-421 c are found to be well-suited for atmospheric characterization. Our atmospheric simulations predict significant Ly alpha transit absorption, due to strong hydrogen escape in both planets, as well as the presence of detectable CH4 in the atmosphere of TOI-421 c if equilibrium chemistry is assumed.
  •  
7.
  • Langlais, B., et al. (författare)
  • Mars environment and magnetic orbiter model payload
  • 2009
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 23:3, s. 761-783
  • Tidskriftsartikel (refereegranskat)abstract
    • Mars Environment and Magnetic Orbiter was proposed as an answer to the Cosmic Vision Call of Opportunity as a M-class mission. The MEMO mission is designed to study the strong interconnections between the planetary interior, atmosphere and solar conditions essential to understand planetary evolution, the appearance of life and its sustainability. MEMO provides a high-resolution, complete, mapping of the magnetic field (below an altitude of about 250 km), with an yet unachieved full global coverage. This is combined with an in situ characterization of the high atmosphere and remote sensing of the middle and lower atmospheres, with an unmatched accuracy. These measurements are completed by an improved detection of the gravity field signatures associated with carbon dioxide cycle and to the tidal deformation. In addition the solar wind, solar EUV/UV and energetic particle fluxes are simultaneously and continuously monitored. The challenging scientific objectives of the MEMO mission proposal are fulfilled with the appropriate scientific instruments and orbit strategy. MEMO is composed of a main platform, placed on a elliptical (130 x 1,000 km), non polar (77A degrees inclination) orbit, and of an independent, higher apoapsis (10,000 km) and low periapsis (300 km) micro-satellite. These orbital parameters are designed so that the scientific return of MEMO is maximized, in terms of measurement altitude, local time, season and geographical coverage. MEMO carry several suites of instruments, made of an 'exospheric-upper atmosphere' package, a 'magnetic field' package, and a 'low-middle atmosphere' package. Nominal mission duration is one Martian year.
  •  
8.
  • Subjak, Jan, et al. (författare)
  • TOI-503: The First Known Brown-dwarf Am-star Binary from the TESS Mission
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 159:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of an intermediate-mass transiting brown dwarf (BD), TOI-503b, from the TESS mission. TOI-503b is the first BD discovered by TESS, and it has circular orbit around a metallic-line A-type star with a period of P.=.3.6772.+/-.0.0001 days. The light curve from TESS indicates that TOI-503b transits its host star in a grazing manner, which limits the precision with which we measure the BD's radius ( = R 1.34+ R b 0.150.26 J). We obtained highresolution spectroscopic observations with the FIES, Ondr.ejov, PARAS, Tautenburg, and TRES spectrographs, and measured the mass of TOI-503b to be Mb.=.53.7.+/-.1.2 MJ. The host star has a mass of Ma.=.1.80.+/-.0.06Me, a radius of Ra.=.1.70.+/-.0.05Re, an effective temperature of Teff.=.7650.+/-.160 K, and a relatively high metallicity of 0.61.+/-.0.07 dex. We used stellar isochrones to derive the age of the system to be 180 Myr, which places its age between that of RIK 72b (a 10 Myr old BD in the Upper Scorpius stellar association) and AD 3116b (a 600 Myr old BD in the Praesepe cluster). Given the difficulty in measuring the tidal interactions between BDs and their host stars, we cannot precisely say whether this BD formed in situ or has had its orbit circularized by its host star over the relatively short age of the system. Instead, we offer an examination of plausible values for the tidal quality factor for the star and BD. TOI-503b joins a growing number of known short-period, intermediate-mass BDs orbiting mainsequence stars, and is the second such BD known to transit an A star, after HATS-70b. With the growth in the population in this regime, the driest region in the BD desert (35-55MJ sin i) is reforesting.
  •  
9.
  • Arridge, Christopher S., et al. (författare)
  • Uranus Pathfinder : exploring the origins and evolution of Ice Giant planets
  • 2012
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 33:2-3, s. 753-791
  • Tidskriftsartikel (refereegranskat)abstract
    • The "Ice Giants" Uranus and Neptune are a different class of planet compared to Jupiter and Saturn. Studying these objects is important for furthering our understanding of the formation and evolution of the planets, and unravelling the fundamental physical and chemical processes in the Solar System. The importance of filling these gaps in our knowledge of the Solar System is particularly acute when trying to apply our understanding to the numerous planetary systems that have been discovered around other stars. The Uranus Pathfinder (UP) mission thus represents the quintessential aspects of the objectives of the European planetary community as expressed in ESA's Cosmic Vision 2015-2025. UP was proposed to the European Space Agency's M3 call for medium-class missions in 2010 and proposed to be the first orbiter of an Ice Giant planet. As the most accessible Ice Giant within the M-class mission envelope Uranus was identified as the mission target. Although not selected for this call the UP mission concept provides a baseline framework for the exploration of Uranus with existing low-cost platforms and underlines the need to develop power sources suitable for the outer Solar System. The UP science case is based around exploring the origins, evolution, and processes at work in Ice Giant planetary systems. Three broad themes were identified: (1) Uranus as an Ice Giant, (2) An Ice Giant planetary system, and (3) An asymmetric magnetosphere. Due to the long interplanetary transfer from Earth to Uranus a significant cruise-phase science theme was also developed. The UP mission concept calls for the use of a Mars Express/Rosetta-type platform to launch on a Soyuz-Fregat in 2021 and entering into an eccentric polar orbit around Uranus in the 2036-2037 timeframe. The science payload has a strong heritage in Europe and beyond and requires no significant technology developments.
  •  
10.
  • Dubinin, E., et al. (författare)
  • Martian ionosphere observed by Mars Express. 2. Influence of solar irradiance on upper ionosphere and escape fluxes
  • 2017
  • Ingår i: Planetary and Space Science. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0032-0633 .- 1873-5088. ; 145, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • We present multi-instrument observations of the effects of solar irradiance on the upper Martian ionosphere and escape fluxes based on Mars Express measurements obtained over almost 12 years. It is shown that the variations in the upper ionosphere caused by solar irradiance lead to significant changes in the trans-terminator fluxes of low-energy ions and total ion losses through the tail. The observed dependence of the electron number density in the upper ionosphere at altitudes above 300 km on solar irradiance implies that the ionosphere at such altitudes was denser by a factor of ten during the periods of solar maxima in solar cycles 22-23. Correspondingly, the trans terminator fluxes of cold ions and escape fluxes through the tail were also significantly higher. We estimate an increase of total ion losses through the tail during these solar maxima by a factor of 5-6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy