1. |
- Absil, Olivier, et al.
(författare)
-
An update on the VORTEX project
- 2015
-
Ingår i: Techniques and Instrumentation for Detection of Exoplanets VII. - : SPIE.
-
Konferensbidrag (refereegranskat)abstract
- In this talk, we will review the on-going activities within the VORTEX teamat the University of Liège and Uppsala University. The VORTEX project aimsto design, manufacture, test, and exploit vector vortex phase masks madeof sub-wavelength gratings (aka the Annular Groove Phase Mask, AGPM)for the direct detection and characterization of extrasolar planets. This talkwill specifically report on the commissioning of several AGPMs on infraredcameras equipping 10-m class telescopes, including the VLT, the LBT andthe Keck. We will describe the in-lab and on-sky performance of the AGPMs,and discuss first scientific observations. We will also report on the lessonslearned from the on-sky operation of our vortices, and discuss ways toimprove their performance. The potential of our coronagraphic devices inthe context of future extremely large telescopes and space missions will alsobe addressed.
|
|
2. |
|
|
3. |
- Absil, Oliver, et al.
(författare)
-
Three years of harvest with the vector vortex coronagraph in the thermal infrared
- 2016
-
Ingår i: Ground-Based and Airborne Instrumentation for Astronomy VI. - : SPIE - International Society for Optical Engineering. - 9781510601963 ; , s. 1-14
-
Konferensbidrag (refereegranskat)abstract
- For several years, we have been developing vortex phase masks based on sub-wavelength gratings, known as Annular Groove Phase Masks. Etched onto diamond substrates, these AGPMs are currently designed to be used in the thermal infrared (ranging from 3 to 13 μm). Our AGPMs were first installed on VLT/NACO and VLT/VISIR in 2012, followed by LBT/LMIRCam in 2013 and Keck/NIRC2 in 2015. In this paper, we review the development, commissioning, on-sky performance, and early scientific results of these new coronagraphic modes and report on the lessons learned. We conclude with perspectives for future developments and applications.
|
|
4. |
|
|
5. |
- Cataldi, Gianni, et al.
(författare)
-
ALMA Resolves CI Emission from the beta Pictoris Debris Disk
- 2018
-
Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 861:1
-
Tidskriftsartikel (refereegranskat)abstract
- The debris disk around beta Pictoris is known to contain gas. Previous ALMA observations revealed a CO belt at similar to 85 au with a distinct clump, interpreted as a location of enhanced gas production. Photodissociation converts CO into C and O within similar to 50 a. We resolve C I emission at 492 GHz using ALMA and study its spatial distribution. C I shows the same clump as seen for CO. This is surprising, as C is expected to quickly spread in azimuth. We derive a low C mass (between 5 x 10(-4) and 3.1 x 10(-3) MA(circle plus)), indicating that gas production started only recently (within similar to 5000 a). No evidence is seen for an atomic accretion disk inward of the CO belt, perhaps because the gas did not yet have time to spread radially. The fact that C and CO share the same asymmetry argues against a previously proposed scenario where the clump is due to an outward-migrating planet trapping planetesimals in a resonance, nor can the observations be explained by an eccentric planetesimal belt secularly forced by a planet. Instead, we suggest that the dust and gas disks should be eccentric. Such a configuration, we further speculate, might be produced by a recent tidal disruption event. Assuming that the disrupted body has had a CO mass fraction of 10%, its total mass would be greater than or similar to 3M(Moon).
|
|
6. |
|
|
7. |
- Forsberg, Pontus, 1981-, et al.
(författare)
-
Making the diamond vortex phase masks for the METIS instrument
- 2024
-
Ingår i: Diamond and related materials. - : Elsevier. - 0925-9635 .- 1879-0062. ; 146
-
Tidskriftsartikel (refereegranskat)abstract
- Direct observation of exoplanets and proto-planetary disks with the METIS instrument at the Extremely Large Telescope will provide new insights into the processes of planet formation and exoplanet atmospheres. This will be possible thanks to a powerful vector vortex coronagraph that can suppress the starlight to reveal faint signals around it. Here we present the process of making the phase masks at the heart of the coronagraph. These annular groove phase masks consist of deep sub-wavelength gratings in diamond that are etched using inductively coupled oxygen plasma with a strong bias. The METIS instrument requires a wider bandwidth than such components have previously been demonstrated for, leading to a grating design with higher aspect ratio and more vertical walls. To achieve this, the etch mask used for diamond etching was changed from aluminium to silicon and the plasma power was increased. We also improved on our method for reducing the grating depth of finished components to fine-tune them. Together with improved optical testing, this allowed us to produce the best vortex phase masks so far demonstrated for the astronomical N-band.
|
|
8. |
- Gasman, Danny, et al.
(författare)
-
MINDS Abundant water and varying C/O across the disk of Sz 98 as seen by JWST/MIRI
- 2023
-
Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 679
-
Tidskriftsartikel (refereegranskat)abstract
- Context. The Mid-InfraRed Instrument (MIRI) Medium Resolution Spectrometer (MRS) on board the James Webb Space Telescope (JWST) allows us to probe the inner regions of protoplanetary disks, where the elevated temperatures result in an active chemistry and where the gas composition may dictate the composition of planets forming in this region. The disk around the classical T Tauri star Sz 98, which has an unusually large dust disk in the millimetre with a compact core, was observed with the MRS, and we examine its spectrum here.Aims. We aim to explain the observations and put the disk of Sz 98 in context with other disks, with a focus on the H2O emission through both its ro-vibrational and pure rotational emission. Furthermore, we compare our chemical findings with those obtained for the outer disk from Atacama Large Millimeter/submillimeter Array (ALMA) observations.Methods. In order to model the molecular features in the spectrum, the continuum was subtracted and local thermodynamic equilibrium (LTE) slab models were fitted. The spectrum was divided into different wavelength regions corresponding to H2O lines of different excitation conditions, and the slab model fits were performed individually per region.Results. We confidently detect CO, H2O, OH, CO2, and HCN in the emitting layers. Despite the plethora of H2O lines, the isotopo-logue (H2O)-O-18 is not detected. Additionally, no other organics, including C2H2, are detected. This indicates that the C/O ratio could be substantially below unity, in contrast with the outer disk. The H2O emission traces a large radial disk surface region, as evidenced by the gradually changing excitation temperatures and emitting radii. Additionally, the OH and CO2 emission is relatively weak. It is likely that H2O is not significantly photodissociated, either due to self-shielding against the stellar irradiation, or UV shielding from small dust particles. While H2O is prominent and OH is relatively weak, the line fluxes in the inner disk of Sz 98 are not outliers compared to other disks.Conclusions. The relative emitting strength of the different identified molecular features points towards UV shielding of H2O in the inner disk of Sz 98, with a thin layer of OH on top. The majority of the organic molecules are either hidden below the dust continuum, or not present. In general, the inferred composition points to a sub-solar C/O ratio (<0.5) in the inner disk, in contrast with the larger than unity C/O ratio in the gas in the outer disk found with ALMA.
|
|
9. |
- Henning, Thomas, et al.
(författare)
-
MINDS : The JWST MIRI Mid-INfrared Disk Survey
- 2024
-
Ingår i: Publications of the Astronomical Society of the Pacific. - 0004-6280 .- 1538-3873. ; 136:5
-
Tidskriftsartikel (refereegranskat)abstract
- The study of protoplanetary disks has become increasingly important with the Kepler satellite finding that exoplanets are ubiquitous around stars in our galaxy and the discovery of enormous diversity in planetary system architectures and planet properties. High-resolution near-IR and ALMA images show strong evidence for ongoing planet formation in young disks. The JWST MIRI mid-INfrared Disk Survey (MINDS) aims to (1) investigate the chemical inventory in the terrestrial planet-forming zone across stellar spectral type, (2) follow the gas evolution into the disk dispersal stage, and (3) study the structure of protoplanetary and debris disks in the thermal mid-IR. The MINDS survey will thus build a bridge between the chemical inventory of disks and the properties of exoplanets. The survey comprises 52 targets (Herbig Ae stars, T Tauri stars, very low-mass stars and young debris disks). We primarily obtain MIRI/MRS spectra with high signal-to-noise ratio (∼100–500) covering the complete wavelength range from 4.9 to 27.9 μm. For a handful of selected targets we also obtain NIRSpec IFU high resolution spectroscopy (2.87–5.27 μm). We will search for signposts of planet formation in thermal emission of micron-sized dust—information complementary to near-IR scattered light emission from small dust grains and emission from large dust in the submillimeter wavelength domain. We will also study the spatial structure of disks in three key systems that have shown signposts for planet formation, TW Hya and HD 169142 using the MIRI coronagraph at 15.5 μm and 10.65 μm respectively and PDS 70 using NIRCam imaging in the 1.87 μm narrow and the 4.8 μm medium band filter. We provide here an overview of the MINDS survey and showcase the power of the new JWST mid-IR molecular spectroscopy with the TW Hya disk spectrum where we report the detection of the molecular ion CH3+ and the robust confirmation of HCO+ earlier detected with Spitzer.
|
|
10. |
- Hinkley, Sasha, et al.
(författare)
-
The JWST Early Release Science Program for the Direct Imaging and Spectroscopy of Exoplanetary Systems
- 2022
-
Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 134:1039
-
Tidskriftsartikel (refereegranskat)abstract
- The direct characterization of exoplanetary systems with high-contrast imaging is among the highest priorities for the broader exoplanet community. As large space missions will be necessary for detecting and characterizing exo-Earth twins, developing the techniques and technology for direct imaging of exoplanets is a driving focus for the community. For the first time, JWST will directly observe extrasolar planets at mid-infrared wavelengths beyond 5 μm, deliver detailed spectroscopy revealing much more precise chemical abundances and atmospheric conditions, and provide sensitivity to analogs of our solar system ice-giant planets at wide orbital separations, an entirely new class of exoplanet. However, in order to maximize the scientific output over the lifetime of the mission, an exquisite understanding of the instrumental performance of JWST is needed as early in the mission as possible. In this paper, we describe our 55 hr Early Release Science Program that will utilize all four JWST instruments to extend the characterization of planetary-mass companions to ∼15 μm as well as image a circumstellar disk in the mid-infrared with unprecedented sensitivity. Our program will also assess the performance of the observatory in the key modes expected to be commonly used for exoplanet direct imaging and spectroscopy, optimize data calibration and processing, and generate representative data sets that will enable a broad user base to effectively plan for general observing programs in future Cycles.
|
|