SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pare Guillaume) ;lar1:(umu)"

Search: WFRF:(Pare Guillaume) > Umeå University

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ahmad, Shafqat, et al. (author)
  • Gene x physical activity interactions in obesity : combined analysis of 111,421 individuals of European ancestry
  • 2013
  • In: PLOS Genetics. - : Public Library of Science. - 1553-7390 .- 1553-7404. ; 9:7, s. e1003607-
  • Journal article (peer-reviewed)abstract
    • Numerous obesity loci have been identified using genome-wide association studies. A UK study indicated that physical activity may attenuate the cumulative effect of 12 of these loci, but replication studies are lacking. Therefore, we tested whether the aggregate effect of these loci is diminished in adults of European ancestry reporting high levels of physical activity. Twelve obesity-susceptibility loci were genotyped or imputed in 111,421 participants. A genetic risk score (GRS) was calculated by summing the BMI-associated alleles of each genetic variant. Physical activity was assessed using self-administered questionnaires. Multiplicative interactions between the GRS and physical activity on BMI were tested in linear and logistic regression models in each cohort, with adjustment for age, age(2), sex, study center (for multicenter studies), and the marginal terms for physical activity and the GRS. These results were combined using meta-analysis weighted by cohort sample size. The meta-analysis yielded a statistically significant GRS x physical activity interaction effect estimate (P-interaction = 0.015). However, a statistically significant interaction effect was only apparent in North American cohorts (n = 39,810, P-interaction = 0.014 vs. n = 71,611, P-interaction = 0.275 for Europeans). In secondary analyses, both the FTO rs1121980 (P-interaction = 0.003) and the SEC16B rs10913469 (P-interaction = 0.025) variants showed evidence of SNP x physical activity interactions. This meta-analysis of 111,421 individuals provides further support for an interaction between physical activity and a GRS in obesity disposition, although these findings hinge on the inclusion of cohorts from North America, indicating that these results are either population-specific or non-causal.
  •  
2.
  • Chikowore, Tinashe, et al. (author)
  • GWAS transethnic meta-analysis of BMI in similar to 700k individuals reveals novel gene-smoking interaction in African populations
  • 2020
  • In: Genetic Epidemiology. - : John Wiley & Sons. - 0741-0395 .- 1098-2272. ; 44:5, s. 475-476
  • Journal article (other academic/artistic)abstract
    • Sixty two percent of the 1.12 billion obese people globally reside in low‐middle income countries, 77% of which are in Africa. There is paucity of data on gene‐lifestyle interactions associated with the increasing prevalence of obesity among Africans. We hypothesised that gene‐environment interacting (GEI) variants exhibit heterogenous effects on obesity in transethnic meta‐analysis of marginal SNP associations as a result of modification by an unknown exposure that varies across populations.Body mass index (BMI) genome‐wide association study (GWAS) summary statistics for 678,671 individuals representative of the major global ancestries were aggregated at 21,338,816 SNPs via fixed‐effects meta‐analysis. Lead SNPs attaining genome‐wide significance (P  < 5 × 10−8) were tested for heterogeneity in effects between GWAS. Lead SNPs with significant evidence of heterogeneity after Bonferroni correction were then selected for interaction analysis with selected lifestyle factors in an independent AWI‐Gen study of 10,500 African participants. Significant interaction findings were then replicated in 3,177 individuals of African ancestry in the UK Biobank.Of 881 lead SNPs, five had significant heterogenous effects on BMI (P  < 5.7 × 10−5). Rs471094, at the CDKAL1 locus had significant interaction with smoking status, which reduced the effect of the BMI raising allele in current smokers (Betaint = −0.949 kg/m2; P int = .002) compared with non‐smokers in AWI‐Gen. This finding was validated in the UK Biobank (Betaint = −1.471 kg/m2, P int = .020; meta‐analysis Betaint = −1.050 kg/m2, P int = .0002). Our results highlight the first gene‐lifestyle interaction on BMI in Africans and demonstrate the utility of transethnic meta‐analysis of GWAS for identifying GEI effects.
  •  
3.
  • Franks, Paul W., et al. (author)
  • Putting the Genome in Context : Gene-Environment Interactions in Type 2 Diabetes
  • 2016
  • In: Current Diabetes Reports. - : Springer Science and Business Media LLC. - 1534-4827 .- 1539-0829. ; 16:7
  • Research review (peer-reviewed)abstract
    • The genome is often the conduit through which environmental exposures convey their effects on health and disease. Whilst not all diseases act by directly perturbing the genome, the phenotypic responses are often genetically determined. Hence, whilst diseases are often defined has having differing degrees of genetic determination, genetic and environmental factors are, with few exceptions, inseparable features of most diseases, not least type 2 diabetes. It follows that to optimize diabetes, prevention and treatment will require that the etiological roles of genetic and environmental risk factors be jointly considered. As we discuss here, studies focused on quantifying gene-environment and gene-treatment interactions are gathering momentum and may eventually yield data that helps guide health-related choices and medical interventions for type 2 diabetes and other complex diseases.
  •  
4.
  • Shungin, Dmitry, et al. (author)
  • Ranking and characterization of established BMI and lipid associated loci as candidates for gene-environment interactions
  • 2017
  • In: PLOS Genetics. - : Public Library Science. - 1553-7390 .- 1553-7404. ; 13:6
  • Journal article (peer-reviewed)abstract
    • Phenotypic variance heterogeneity across genotypes at a single nucleotide polymorphism (SNP) may reflect underlying gene-environment (GxE) or gene-gene interactions. We modeled variance heterogeneity for blood lipids and BMI in up to 44,211 participants and investigated relationships between variance effects (P-v), GxE interaction effects (with smoking and physical activity), and marginal genetic effects (P-m). Correlations between P-v and P-m were stronger for SNPs with established marginal effects (Spearman's rho = 0.401 for triglycerides, and rho = 0.236 for BMI) compared to all SNPs. When P-v and P-m were compared for all pruned SNPs, only BMI was statistically significant (Spearman's rho = 0.010). Overall, SNPs with established marginal effects were overrepresented in the nominally significant part of the P-v distribution (P-binomial < 0.05). SNPs from the top 1% of the P-m distribution for BMI had more significant P-v values (Pmann-Whitney = 1.46x10(-5)), and the odds ratio of SNPs with nominally significant (< 0.05) P-m and P-v was 1.33 (95% CI: 1.12, 1.57) for BMI. Moreover, BMI SNPs with nominally significant GxE interaction P-values (Pint < 0.05) were enriched with nominally significant P-v values (P-binomial = 8.63x10(-9) and 8.52x10(-7) for SNP x smoking and SNP x physical activity, respectively). We conclude that some loci with strong marginal effects may be good candidates for GxE, and variance-based prioritization can be used to identify them.
  •  
5.
  • Surendran, Praveen, et al. (author)
  • Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals
  • 2020
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 52:12, s. 1314-1332
  • Journal article (peer-reviewed)abstract
    • Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to similar to 1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency <= 0.01) variant BP associations (P < 5 x 10(-8)), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were similar to 8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view