SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Park Hyun) ;lar1:(liu)"

Sökning: WFRF:(Park Hyun) > Linköpings universitet

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Lee, Taewoong, et al. (författare)
  • Dye-functionalized carbonaceous interlayer as an efficient lithium polysulfide mediator for high performance lithium-sulfur batteries
  • 2024
  • Ingår i: Applied Surface Science. - : ELSEVIER. - 0169-4332 .- 1873-5584. ; 649
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium - sulfur (Li-S) batteries with their high theoretical energy density and abundant resources have been considered as a promising candidate for next-generation energy storage systems. Nonetheless, undesirable diffusion of lithium polysulfides (LiPSs) toward the lithium metal anode in electrolytes during discharge/charge cycles of Li-S batteries, which is known as shuttle behavior of LiPSs, degrades the long-term stability of Li-S batteries and limits their practical applications. Herein, we present dye-functionalized carbonaceous interlayer, in which organic dye containing nitrogen and sulfur functional groups are incorporated into the carbon matrix of a graphitic layer via hydrothermal process. The introduction of such functional interlayer in Li-S batteries reveals that the carbon matrix with various heteroatom moieties can create physically/chemically favorable active sites for trapping LiPSs and enhance LiPSs conversion toward insoluble products of Li2S/Li2S2, resulting in excellent rate capability and long-term stability with high coulombic efficiency. This study emphasizes the potential of organic dyes functionalization and demonstrates enhanced LiPSs conversion and long-term stability of Li-S batteries.
  •  
3.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
4.
  • Lee, Seung Joon, et al. (författare)
  • Microslit on a chip: A simplified filter to capture circulating tumor cells enlarged with microbeads
  • 2019
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 14:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Microchips are widely used to separate circulating tumor cells (CTCs) from whole blood by virtues of sophisticated manipulation for microparticles. Here, we present a chip with an 8 µm high and 27.9 mm wide slit to capture cancer cells bound to 3 µm beads. Apart from a higher purity and recovery rate, the slit design allows for simplified fabrication, easy cell imaging, less clogging, lower chamber pressure and, therefore, higher throughput. The beads were conjugated with anti-epithelial cell adhesion molecules (anti-EpCAM) to selectively bind to breast cancer cells (MCF-7) used to spike the whole blood. The diameter of the cell-bead construct was in average 23.1 µm, making them separable from other cells in the blood. As a result, the cancer cells were separated from 5 mL of whole blood with a purity of 52.0% and a recovery rate of 91.1%, and also we confirmed that the device can be applicable to clinical samples of human breast cancer patients. The simple design with microslit, by eliminating any high-aspect ratio features, is expected to reduce possible defects on the chip and, therefore, more suitable for mass production without false separation outputs.
  •  
5.
  • Park, Chanyong, et al. (författare)
  • Efficient separation of large particles and giant cancer cells using an isosceles trapezoidal spiral microchannel
  • 2024
  • Ingår i: The Analyst. - : ROYAL SOC CHEMISTRY. - 0003-2654 .- 1364-5528.
  • Tidskriftsartikel (refereegranskat)abstract
    • Polyploid giant cancer cells (PGCCs) contribute to the genetic heterogeneity and evolutionary dynamics of tumors. Their size, however, complicates their isolation from mainstream tumor cell populations. Standard techniques like fluorescence-activated cell sorting (FACS) rely on fluorescent labeling, introducing potential challenges in subsequent PGCC analyses. In response, we developed the Isosceles Trapezoidal Spiral Microchannel (ITS mu C), a microfluidic device optimizing the Dean drag force (FD) and exploiting uniform vortices for enhanced separation. Numerical simulations highlighted ITS mu C's advantage in producing robust FD compared to rectangular and standard trapezoidal channels. Empirical results confirmed its ability to segregate larger polystyrene (PS) particles (avg. diameter: 50 mu m) toward the inner wall, while directing smaller ones (avg. diameter: 23 mu m) outward. Utilizing ITS mu C, we efficiently isolated PGCCs from doxorubicin-resistant triple-negative breast cancer (DOXR-TNBC) and patient-derived cancer (PDC) cells, achieving outstanding purity, yield, and viability rates (all greater than 90%). This precision was accomplished without fluorescent markers, and the versatility of ITS mu C suggests its potential in differentiating a wide range of heterogeneous cell populations. Polyploid giant cancer cells (PGCCs) contribute to the genetic heterogeneity and evolutionary dynamics of tumors.
  •  
6.
  • Ha, Hojin, et al. (författare)
  • In-vitro and In-Vivo Assessment of 4D Flow MRI Reynolds Stress Mapping for Pulsatile Blood Flow
  • 2021
  • Ingår i: Frontiers in Bioengineering and Biotechnology. - : Frontiers Media S.A.. - 2296-4185. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Imaging hemodynamics play an important role in the diagnosis of abnormal blood flow due to vascular and valvular diseases as well as in monitoring the recovery of normal blood flow after surgical or interventional treatment. Recently, characterization of turbulent blood flow using 4D flow magnetic resonance imaging (MRI) has been demonstrated by utilizing the changes in signal magnitude depending on intravoxel spin distribution. The imaging sequence was extended with a six-directional icosahedral (ICOSA6) flow-encoding to characterize all elements of the Reynolds stress tensor (RST) in turbulent blood flow. In the present study, we aimed to demonstrate the feasibility of full RST analysis using ICOSA6 4D flow MRI under physiological conditions. First, the turbulence analysis was performed through in vitro experiments with a physiological pulsatile flow condition. Second, a total of 12 normal subjects and one patient with severe aortic stenosis were analyzed using the same sequence. The in-vitro study showed that total turbulent kinetic energy (TKE) was less affected by the signal-to-noise ratio (SNR), however, maximum principal turbulence shear stress (MPTSS) and total turbulence production (TP) had a noise-induced bias. Smaller degree of the bias was observed for TP compared to MPTSS. In-vivo study showed that the subject-variability on turbulence quantification was relatively low for the consistent scan protocol. The in vivo demonstration of the stenosis patient showed that the turbulence analysis could clearly distinguish the difference in all turbulence parameters as they were at least an order of magnitude larger than those from the normal subjects.
  •  
7.
  • Ha, Hojin, et al. (författare)
  • In vitro experiments on ICOSA6 4D flow MRI measurement for the quantification of velocity and turbulence parameters
  • 2020
  • Ingår i: Magnetic Resonance Imaging. - : ELSEVIER SCIENCE INC. - 0730-725X .- 1873-5894. ; 72, s. 49-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To perform comprehensive in vitro experiments using six-directional icosahedral flow encoding (ICOSA6) 4D flow magnetic resonance imaging (MRI) under various scan conditions to analyze the robustness of velocity and turbulence quantification. Materials and methods: In vitro flow phantoms with steady flow rates of 10 and 20 L/min were scanned using both conventional 4D flow MRI and ICOSA6. Experiments focused on comparisons between ICOSA6 and conventional four point (4P) methods, and the effects of contrast agents, velocity encoding range (Venc), and scan direction on velocity and turbulence quantification. Results: The results demonstrated that 1) ICOSA6 improves the velocity-to-noise ratio (VNR) of velocity estimation by 33% (on average) and results in similar turbulent kinetic energy (TKE) estimation as the 4P method. 2) Measurements with a contrast agent resulted in more than a 2.5 fold increase in average VNR. However, the improvement of total TKE quantification was not obvious. 3) TKE estimation was less affected by Venc and the scan direction, whereas turbulence production (TP) estimation was largely affected by these measurement conditions. The effects of Venc and scan direction accounted for less than 11.63% of TKE estimation, but up to 33.89% of TP estimation. Conclusion: The ICOSA6 scheme is compatible with conventional 4D flow MRI for velocity and TKE measurement. Contrast agents are effective at increasing VNR, but not signal-to-noise ratio for TKE quantification. The effects of Venc and scan direction influence total TP more than total TKE.
  •  
8.
  • Kim, Seong-Min, et al. (författare)
  • Influence of PEDOT:PSS crystallinity and composition on electrochemical transistor performance and long-term stability
  • 2018
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Owing to the mixed electron/hole and ion transport in the aqueous environment, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-based organic electrochemical transistor has been regarded as one of the most promising device platforms for bioelectronics. Nonetheless, there exist very few in-depth studies on how intrinsic channel material properties affect their performance and long-term stability in aqueous environments. Herein, we investigated the correlation among film microstructural crystallinity/composition, device performance, and aqueous stability in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films. The highly organized anisotropic ordering in crystallized conducting polymer films led to remarkable device characteristics such as large transconductance (similar to 20 mS), extraordinary volumetric capacitance (113 F.cm(-3)), and unprecedentedly high [mu C*] value (similar to 490 F.cm(-1) V-1 s(-1)). Simultaneously, minimized poly(styrenesulfonate) residues in the crystallized film substantially afforded marginal film swelling and robust operational stability even after amp;gt;20-day water immersion, amp;gt;2000-time repeated on-off switching, or high-temperature/pressure sterilization. We expect that the present study will contribute to the development of long-term stable implantable bioelectronics for neural recording/stimulation.
  •  
9.
  • Park, Seung Hyun, et al. (författare)
  • Nonpharmaceutical interventions reduce the incidence and mortality of COVID-19: A study based on the survey from the International COVID-19 Research Network (ICRN)
  • 2023
  • Ingår i: Journal of Medical Virology. - : WILEY. - 0146-6615 .- 1096-9071. ; 95:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The recently emerged novel coronavirus, "severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)," caused a highly contagious disease called coronavirus disease 2019 (COVID-19). It has severely damaged the worlds most developed countries and has turned into a major threat for low- and middle-income countries. Since its emergence in late 2019, medical interventions have been substantial, and most countries relied on public health measures collectively known as nonpharmaceutical interventions (NPIs). We aimed to centralize the accumulative knowledge of NPIs against COVID-19 for each country under one worldwide consortium. International COVID-19 Research Network collaborators developed a cross-sectional online survey to assess the implications of NPIs and sanitary supply on the incidence and mortality of COVID-19. The survey was conducted between January 1 and February 1, 2021, and participants from 92 countries/territories completed it. The association between NPIs, sanitation supplies, and incidence and mortality were examined by multivariate regression, with the log-transformed value of population as an offset value. The majority of countries/territories applied several preventive strategies, including social distancing (100.0%), quarantine (100.0%), isolation (98.9%), and school closure (97.8%). Individual-level preventive measures such as personal hygiene (100.0%) and wearing facial masks (94.6% at hospitals; 93.5% at mass transportation; 91.3% in mass gathering facilities) were also frequently applied. Quarantine at a designated place was negatively associated with incidence and mortality compared to home quarantine. Isolation at a designated place was also associated with reduced mortality compared to home isolation. Recommendations to use sanitizer for personal hygiene reduced incidence compared to the recommendation to use soap. Deprivation of masks was associated with increased incidence. Higher incidence and mortality were found in countries/territories with higher economic levels. Mask deprivation was pervasive regardless of economic level. NPIs against COVID-19 such as using sanitizer, quarantine, and isolation can decrease the incidence and mortality of COVID-19.
  •  
10.
  • Shin, Hyun Young, et al. (författare)
  • Cell Seeding Technology for Microarray-Based Quantitative Human Primary Skeletal Muscle Cell Analysis
  • 2019
  • Ingår i: Analytical Chemistry. - : AMER CHEMICAL SOC. - 0003-2700 .- 1520-6882. ; 91:22, s. 14214-14219
  • Tidskriftsartikel (refereegranskat)abstract
    • Pipetting techniques play a crucial role in obtaining reproducible and reliable results, especially when seeding cells on small target areas, such as on microarrays, biochips or microfabricated cell culture systems. For very rare cells, such as human primary skeletal muscle cells (skMCs), manual (freehand) cell seeding techniques invariably result in nonuniform cell spreading and heterogeneous cell densities, giving rise to undesirable variations in myogenesis and differentiation. To prevent such technique-dependent variation, we have designed and fabricated a simple, low-cost pipet guidance device (PGD), and holder that works with hand-held pipettes. This work validates the accuracy and reproducibility of the PGD platform and compares its effectiveness with manual and robotic seeding techniques. The PGD system ensures reproducibility of cell seeding, comparable to that of more expensive robotic dispensing systems, resulting in a high degree of cell uniformity and homogeneous cell densities, while also enabling cell community studies. As compared to freehand pipetting, PGD-assisted seeding of C2C12 mouse myoblasts showed 5.3 times more myotube formation and likewise myotubes derived from PGD-seeded human primary skMCs were 3.6 times thicker and 2.2 times longer. These results show that this novel, yet simple PGD-assisted pipetting technique provides precise cell seeding on small targets, ensuring reproducible and reliable high-throughput cell assays.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy