SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Parker Stephen C. J.) ;lar1:(lu)"

Search: WFRF:(Parker Stephen C. J.) > Lund University

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • 2019
  • Journal article (peer-reviewed)
  •  
4.
  • Speliotes, Elizabeth K., et al. (author)
  • Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:11, s. 937-948
  • Journal article (peer-reviewed)abstract
    • Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and ~2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 × 10−8), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.
  •  
5.
  • Lango Allen, Hana, et al. (author)
  • Hundreds of variants clustered in genomic loci and biological pathways affect human height.
  • 2010
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 467:7317, s. 832-8
  • Journal article (peer-reviewed)abstract
    • Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
  •  
6.
  • Fuchsberger, Christian, et al. (author)
  • The genetic architecture of type 2 diabetes
  • 2016
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 536:7614, s. 41-47
  • Journal article (peer-reviewed)abstract
    • The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.
  •  
7.
  • Flannick, Jason, et al. (author)
  • Data Descriptor : Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
  • 2017
  • In: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 4
  • Journal article (peer-reviewed)abstract
    • To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (> 80% of low-frequency coding variants in similar to ~82 K Europeans via the exome chip, and similar to ~90% of low-frequency non-coding variants in similar to ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.
  •  
8.
  • Holmfeldt, Linda, et al. (author)
  • The genomic landscape of hypodiploid acute lymphoblastic leukemia
  • 2013
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 45:3, s. 242-252
  • Journal article (peer-reviewed)abstract
    • The genetic basis of hypodiploid acute lymphoblastic leukemia (ALL), a subtype of ALL characterized by aneuploidy and poor outcome, is unknown. Genomic profiling of 124 hypodiploid ALL cases, including whole-genome and exome sequencing of 40 cases, identified two subtypes that differ in the severity of aneuploidy, transcriptional profiles and submicroscopic genetic alterations. Near-haploid ALL with 24-31 chromosomes harbor alterations targeting receptor tyrosine kinase signaling and Ras signaling (71%) and the lymphoid transcription factor gene IKZF3 (encoding AIOLOS; 13%). In contrast, low-hypodiploid ALL with 32-39 chromosomes are characterized by alterations in TP53 (91.2%) that are commonly present in nontumor cells, IKZF2 (encoding HELIOS; 53%) and RB1 (41%). Both near-haploid and low-hypodiploid leukemic cells show activation of Ras-signaling and phosphoinositide 3-kinase (PI3K)-signaling pathways and are sensitive to PI3K inhibitors, indicating that these drugs should be explored as a new therapeutic strategy for this aggressive form of leukemia.
  •  
9.
  • McCluskey, Andrew R., et al. (author)
  • Bayesian determination of the effect of a deep eutectic solvent on the structure of lipid monolayers
  • 2019
  • In: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 21:11, s. 6133-6141
  • Journal article (peer-reviewed)abstract
    • In this work, we present the first example of the self-assembly of phospholipid monolayers at the interface between air and an ionic solvent. Deep eutectic solvents are a novel class of environmentally friendly, non-aqueous, room temperature liquids with tunable properties, that have wide-ranging potential applications and are capable of promoting the self-assembly of surfactant molecules. We use a chemically-consistent Bayesian modelling of X-ray and neutron reflectometry measurements to show that these monolayers broadly behave as they do on water. This method allows for the monolayer structure to be determined, alongside the molecular volumes of the individual monolayer components, without the need for water-specific constraints to be introduced. Furthermore, using this method we are able to better understand the correlations present between parameters in the analytical model. This example of a non-aqueous phospholipid monolayer has important implications for the potential uses of these solvents and for our understanding of how biomolecules behave in the absence of water.
  •  
10.
  • Viñuela, Ana, et al. (author)
  • Genetic variant effects on gene expression in human pancreatic islets and their implications for T2D
  • 2020
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 4912-4912
  • Journal article (peer-reviewed)abstract
    • Most signals detected by genome-wide association studies map to non-coding sequence and their tissue-specific effects influence transcriptional regulation. However, key tissues and cell-types required for functional inference are absent from large-scale resources. Here we explore the relationship between genetic variants influencing predisposition to type 2 diabetes (T2D) and related glycemic traits, and human pancreatic islet transcription using data from 420 donors. We find: (a) 7741 cis-eQTLs in islets with a replication rate across 44 GTEx tissues between 40% and 73%; (b) marked overlap between islet cis-eQTL signals and active regulatory sequences in islets, with reduced eQTL effect size observed in the stretch enhancers most strongly implicated in GWAS signal location; (c) enrichment of islet cis-eQTL signals with T2D risk variants identified in genome-wide association studies; and (d) colocalization between 47 islet cis-eQTLs and variants influencing T2D or glycemic traits, including DGKB and TCF7L2. Our findings illustrate the advantages of performing functional and regulatory studies in disease relevant tissues.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10
Type of publication
journal article (10)
Type of content
peer-reviewed (10)
Author/Editor
Groop, Leif (5)
McCarthy, Mark I (5)
Boehnke, Michael (5)
Mohlke, Karen L (5)
Salomaa, Veikko (4)
Melander, Olle (4)
show more...
Deloukas, Panos (4)
Wareham, Nicholas J. (4)
Hu, Frank B. (4)
Qi, Lu (4)
Tuomilehto, Jaakko (4)
Mangino, Massimo (4)
Gieger, Christian (4)
Barroso, Ines (4)
Hattersley, Andrew T (4)
Spector, Timothy D (4)
Metspalu, Andres (4)
Meitinger, Thomas (4)
Loos, Ruth J F (4)
Elliott, Paul (4)
Illig, Thomas (4)
Voight, Benjamin F. (4)
Purcell, Shaun (4)
Liu, Jianjun (4)
Prokopenko, Inga (4)
Wood, Andrew R (4)
Frayling, Timothy M (4)
Esko, Tõnu (4)
Liang, Liming (4)
Ferreira, Teresa (4)
Jackson, Anne U. (4)
Boeing, Heiner (3)
Tuomi, Tiinamaija (3)
Fadista, Joao (3)
Kuusisto, Johanna (3)
Isomaa, Bo (3)
Laakso, Markku (3)
Pedersen, Oluf (3)
Hansen, Torben (3)
Ingelsson, Erik (3)
Jorgensen, Torben (3)
Peters, Annette (3)
Mahajan, Anubha (3)
Froguel, Philippe (3)
Gloyn, Anna L (3)
Karpe, Fredrik (3)
Ziegler, Andreas (3)
Balkau, Beverley (3)
Gjesing, Anette P (3)
Bonnycastle, Lori L. (3)
show less...
University
Karolinska Institutet (6)
Uppsala University (5)
Umeå University (4)
University of Gothenburg (3)
Stockholm University (2)
show more...
Halmstad University (1)
Linköping University (1)
Chalmers University of Technology (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (10)
Research subject (UKÄ/SCB)
Medical and Health Sciences (9)
Natural sciences (3)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view