Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pasaniuc Bogdan) "

Sökning: WFRF:(Pasaniuc Bogdan)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
  • Butler-Laporte, Guillaume, et al. (författare)
  • Exome-wide association study to identify rare variants influencing COVID-19 outcomes : Results from the Host Genetics Initiative.
  • 2022
  • Ingår i: PLOS Genetics. - 1553-7390 .- 1553-7404. ; 18:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Host genetics is a key determinant of COVID-19 outcomes. Previously, the COVID-19 Host Genetics Initiative genome-wide association study used common variants to identify multiple loci associated with COVID-19 outcomes. However, variants with the largest impact on COVID-19 outcomes are expected to be rare in the population. Hence, studying rare variants may provide additional insights into disease susceptibility and pathogenesis, thereby informing therapeutics development. Here, we combined whole-exome and whole-genome sequencing from 21 cohorts across 12 countries and performed rare variant exome-wide burden analyses for COVID-19 outcomes. In an analysis of 5,085 severe disease cases and 571,737 controls, we observed that carrying a rare deleterious variant in the SARS-CoV-2 sensor toll-like receptor TLR7 (on chromosome X) was associated with a 5.3-fold increase in severe disease (95% CI: 2.75-10.05, p = 5.41x10-7). This association was consistent across sexes. These results further support TLR7 as a genetic determinant of severe disease and suggest that larger studies on rare variants influencing COVID-19 outcomes could provide additional insights.
  • Chen, Hongjie, et al. (författare)
  • Large-scale cross-cancer fine-mapping of the 5p15.33 region reveals multiple independent signals
  • 2021
  • Ingår i: Human Genetics and Genomics Advances. - : Cell Press. - 2666-2477. ; 2:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWASs) have identified thousands of cancer risk loci revealing many risk regions shared across multiple cancers. Characterizing the cross-cancer shared genetic basis can increase our understanding of global mechanisms of cancer development. In this study, we collected GWAS summary statistics based on up to 375,468 cancer cases and 530,521 controls for fourteen types of cancer, including breast (overall, estrogen receptor [ER]-positive, and ER-negative), colorectal, endometrial, esophageal, glioma, head/neck, lung, melanoma, ovarian, pancreatic, prostate, and renal cancer, to characterize the shared genetic basis of cancer risk. We identified thirteen pairs of cancers with statistically significant local genetic correlations across eight distinct genomic regions. Specifically, the 5p15.33 region, harboring the TERT and CLPTM1L genes, showed statistically significant local genetic correlations for multiple cancer pairs. We conducted a cross-cancer fine-mapping of the 5p15.33 region based on eight cancers that showed genome-wide significant associations in this region (ER-negative breast, colorectal, glioma, lung, melanoma, ovarian, pancreatic, and prostate cancer). We used an iterative analysis pipeline implementing a subset-based meta-analysis approach based on cancer-specific conditional analyses and identified ten independent cross-cancer associations within this region. For each signal, we conducted cross-cancer fine-mapping to prioritize the most plausible causal variants. Our findings provide a more in-depth understanding of the shared inherited basis across human cancers and expand our knowledge of the 5p15.33 region in carcinogenesis.
  • Feng, Helian, et al. (författare)
  • Cross-cancer cross-tissue Transcriptome-wide Association Study (TWAS) of 11 cancers identifies 56 novel genes
  • 2020
  • Ingår i: Genetic Epidemiology. - : John Wiley & Sons. - 0741-0395 .- 1098-2272. ; 44:5, s. 481-481
  • Tidskriftsartikel (övrigt vetenskapligt)abstract
    • Though heterogeneous, multiple tumor types share hallmark mechanisms. Thus, identifying genes associated with multiple cancer types may shed light on general oncogenic mechanisms and identify genes missed in single‐cancer analyses. TWAS have been successful in testing whether genetically‐predicted tissue‐specific gene expression is associated with cancer risk. Although cross‐cancer genome‐wide association studies (GWAS) analyses have been performed previously, no cross‐cancer TWAS has been conducted to date. Here, we implement a pipeline to perform cross‐cancer, cross‐tissue TWAS analysis. We use newly‐developed multi‐trait TWAS test statistics to integrate the TWAS results for association between 11 separated cancers and predicted gene expression in 43 GTEx tissues, including a “sum” test and a “variance components” test, analogous to fixed‐ and random‐effects meta‐analyses. We then integrated the results across different tissues using the Aggregated Cauchy Association Test (ACAT) combined test.A total of 403 genes were significantly associated with at least one cancer type for at least one tissue; 96 additional genes were identified when combining test results across cancers; and 35 additional genes when further combining test results across tissue. Among these significant genes, 70 were not near previously‐published GWAS index variants. 14 of the 70 novel genes were identified from the single‐cancer single‐tissue test; an additional 43 were identified with the cross‐cancer test; and another 13 were identified when further combined across tissues. The newly identified genes, including RBBP8 and TP53BP , are involved in chromatin structure, tumorigenesis, apoptosis, transcriptional regulation, DNA repair, immune system, oxidative damage and cell‐cycle, proliferation, progression, shape, structure, and migration.
  • Mancuso, Nicholas, et al. (författare)
  • Large-scale transcriptome-wide association study identifies new prostate cancer risk regions
  • 2018
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723 .- 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Although genome-wide association studies (GWAS) for prostate cancer (PrCa) have identified more than 100 risk regions, most of the risk genes at these regions remain largely unknown. Here we integrate the largest PrCa GWAS (N = 142,392) with gene expression measured in 45 tissues (N = 4458), including normal and tumor prostate, to perform a multi-tissue transcriptome-wide association study (TWAS) for PrCa. We identify 217 genes at 84 independent 1 Mb regions associated with PrCa risk, 9 of which are regions with no genome-wide significant SNP within 2 Mb. 23 genes are significant in TWAS only for alternative splicing models in prostate tumor thus supporting the hypothesis of splicing driving risk for continued oncogenesis. Finally, we use a Bayesian probabilistic approach to estimate credible sets of genes containing the causal gene at a pre-defined level; this reduced the list of 217 associations to 109 genes in the 90% credible set. Overall, our findings highlight the power of integrating expression with PrCa GWAS to identify novel risk loci and prioritize putative causal genes at known risk loci.
  • Wu, Lang, et al. (författare)
  • Identification of Novel Susceptibility Loci and Genes for Prostate Cancer Risk : A Transcriptome-Wide Association Study in over 140,000 European Descendants
  • 2019
  • Ingår i: Cancer Research. - : AMER ASSOC CANCER RESEARCH. - 0008-5472 .- 1538-7445. ; 79:13, s. 3192-3204
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association study-identified prostate cancer risk variants explain only a relatively small fraction of its familial relative risk, and the genes responsible for many of these identified associations remain unknown. To discover novel prostate cancer genetic loci and possible causal genes at previously identified risk loci, we performed a transcriptome-wide association study in 79,194 cases and 61,112 controls of European ancestry. Using data from the Genotype-Tissue Expression Project, we established genetic models to predict gene expression across the transcriptome for both prostate models and cross-tissue models and evaluated model performance using two independent datasets. We identified significant associations for 137 genes at P < 2.61 x 10(-6), a Bonferroni-corrected threshold, including nine genes that remained significant at P < 2.61 x 10(-6) after adjusting for all known prostate cancer risk variants in nearby regions. Of the 128 remaining associated genes, 94 have not yet been reported as potential target genes at known loci. We silenced 14 genes and many showed a consistent effect on viability and colony-forming efficiency in three cell lines. Our study provides substantial new information to advance our understanding of prostate cancer genetics and biology. Significance: This study identifies novel prostate cancer genetic loci and possible causal genes, advancing our understanding of the molecular mechanisms that drive prostate cancer.
  • Zaitlen, Noah, et al. (författare)
  • Analysis of case-control association studies with known risk variants
  • 2012
  • Ingår i: Bioinformatics. - : Oxford University Press. - 1367-4803 .- 1460-2059. ; 28:13, s. 1729-1737
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: The question of how to best use information from known associated variants when conducting disease association studies has yet to be answered. Some studies compute a marginal P-value for each Several Nucleotide Polymorphisms independently, ignoring previously discovered variants. Other studies include known variants as covariates in logistic regression, but a weakness of this standard conditioning strategy is that it does not account for disease prevalence and non-random ascertainment, which can induce a correlation structure between candidate variants and known associated variants even if the variants lie on different chromosomes. Here, we propose a new conditioning approach, which is based in part on the classical technique of liability threshold modeling. Roughly, this method estimates model parameters for each known variant while accounting for the published disease prevalence from the epidemiological literature. Results: We show via simulation and application to empirical datasets that our approach outperforms both the no conditioning strategy and the standard conditioning strategy, with a properly controlled false-positive rate. Furthermore, in multiple data sets involving diseases of low prevalence, standard conditioning produces a severe drop in test statistics whereas our approach generally performs as well or better than no conditioning. Our approach may substantially improve disease gene discovery for diseases with many known risk variants.
  • Zaitlen, Noah, et al. (författare)
  • Informed Conditioning on Clinical Covariates Increases Power in Case-Control Association Studies
  • 2012
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 8:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic case-control association studies often include data on clinical covariates, such as body mass index (BMI), smoking status, or age, that may modify the underlying genetic risk of case or control samples. For example, in type 2 diabetes, odds ratios for established variants estimated from low-BMI cases are larger than those estimated from high-BMI cases. An unanswered question is how to use this information to maximize statistical power in case-control studies that ascertain individuals on the basis of phenotype (case-control ascertainment) or phenotype and clinical covariates (case-controlcovariate ascertainment). While current approaches improve power in studies with random ascertainment, they often lose power under case-control ascertainment and fail to capture available power increases under case-control-covariate ascertainment. We show that an informed conditioning approach, based on the liability threshold model with parameters informed by external epidemiological information, fully accounts for disease prevalence and non-random ascertainment of phenotype as well as covariates and provides a substantial increase in power while maintaining a properly controlled falsepositive rate. Our method outperforms standard case-control association tests with or without covariates, tests of gene x covariate interaction, and previously proposed tests for dealing with covariates in ascertained data, with especially large improvements in the case of case-control-covariate ascertainment. We investigate empirical case-control studies of type 2 diabetes, prostate cancer, lung cancer, breast cancer, rheumatoid arthritis, age-related macular degeneration, and end-stage kidney disease over a total of 89,726 samples. In these datasets, informed conditioning outperforms logistic regression for 115 of the 157 known associated variants investigated (P-value = 1x10(-9)). The improvement varied across diseases with a 16% median increase in chi(2) test statistics and a commensurate increase in power. This suggests that applying our method to existing and future association studies of these diseases may identify novel disease loci.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy