SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Patel K) ;lar1:(hv)"

Sökning: WFRF:(Patel K) > Högskolan Väst

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chaudhari, Rakesh, et al. (författare)
  • A parametric study and experimental investigations of microstructure and mechanical properties of multi-layered structure of metal core wire using wire arc additive manufacturing
  • 2023
  • Ingår i: Journal of Advanced Joining Processes. - : Elsevier. - 2666-3309. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present study, the Gas metal arc welding (GMAW) based Wire-arc additive manufacturing (WAAM) process was preferred for the fabrication of multi-layered structures and their investigations of mechanical properties on metal core wire. Based on literature work, preliminary trials, machine limits, travel speed (TS), voltage (V), and gas mixture ratio (GMR) were identified as machining parameters along with output factors of bead width (BW), bead height (BH), and depth-of-penetration (DOP). Experiments were conducted by following the Box-Behnken design. The feasibility of the generated non-linear regression models has been validated through the statistical analysis of variance and residual plots. The multi-layered structure has been successfully fabricated at the optimized parametric settings of TS at 24 mm/s; the voltage at 24 V, and GMR at 1 which was obtained through the heat transfer search (HTS) algorithm. The fabricated structure was observed to be uniform. The structure exhibited uniform bead-on-bead deposition for the deposited layers. The fabricated multi-layered structure underwent a detailed microstructural and mechanical examinations. Microstructural examination revealed dense needles at the bottom section of the structure as compared to the top section, as the bottom section undergoes multiple heating and cooling cycles. When comparing the multilayer structure to the metal core wire, all the properties exhibited favorable tensile characteristics. The obtained strength from the impact test results highlights the impressive ductility of the multi-layer deposition. Fractography of tensile and impact test specimens has shown the occurrences of larger dimples and suggested a ductile fracture. Lastly, the hardness value in all the sections of the built structure was observed to be uniform, suggesting uniform deposition across the built multi-layer structure. The authors consider the current work will be highly beneficial for users in fabricating multi-layer structures at optimized parametric settings and their investigations for mechanical properties for metal core wire.  
  •  
2.
  • Sharma, D. K., et al. (författare)
  • Different reinforcement strategies of hybrid surface composite AA6061/(B4C+MoS2) produced by friction stir processing : Verschiedene Strategien beim Rührreibschweißen zur Verstärkung von Hybrid‐Oberflächenverbundwerkstoffen aus AA6061/(B4C+MoS2)
  • 2020
  • Ingår i: Materialwissenschaft und Werkstofftechnik. - : Wiley-VCH Verlagsgesellschaft. - 0933-5137 .- 1521-4052. ; 51:11, s. 1493-1506
  • Tidskriftsartikel (refereegranskat)abstract
    • Aluminum surface composites have gained huge importance in material processing due to their noble tribological characteristics. The reinforcement of solid lubricant particles with hard ceramics further enriches the tribological characteristics of surface composites. In the current study, friction stir processing was chosen to synthesize hybrid surface composites of aluminum containing B4C and MoS2 particles with anticipated improved tribological behavior. B4C and MoS2 powder particles in 87.5: 12.5 ratio were reinforced into the AA6061 by hole and groove method. Microstructural observations indicated that reinforcement particles are well distributed in the matrix. The hardness and wear resistance of hybrid surface composites improved as compared to the base material, due to well distributed abrasive B4C and solid lubricant MoS2 particles in AA6061. The hybrid surface composites achieved ~32 % increased average hardness as compared to the base material. Hole method revealed ~13 % better wear resistance compared to the groove method for friction stir processed hybrid surface composite, attributing to an improved homogeneity of particle distribution shown by zigzag hole pattern. Moreover, friction stir processed AA6061 without reinforcement particles exhibited reduced hardness and wear resistance due to loss of strengthening precipitates during multi-pass friction stir processing. © 2020 Wiley-VCH GmbH
  •  
3.
  • Parikh, V. K., et al. (författare)
  • Current status on manufacturing routes to produce metal matrix composites : State-of-the-art
  • 2023
  • Ingår i: Heliyon. - : Elsevier BV. - 2405-8440. ; 9:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Owing to its excellent properties, Metal Matrix Composites (MMC) has gained popularity and finds application in aerospace, aircraft, shipbuilding, biomedical, biodegradable implant materials and many more. To serve the industrial needs, the manufactured MMC should have homogenous distribution along with minimum agglomeration of reinforcement particles, defect-free microstructure, superior mechanical, tribological and corrosive properties. The techniques implemented to manufacture MMC highly dominate the aforementioned characteristics. According to the physical state of the matrix, the techniques implemented for manufacturing MMC can be classified under two categories i.e. solid state processing and liquid state process. The present article attempts to review the current status of different manufacturing techniques covered under these two categories. The article elaborates on the working principles of state-of-the-art manufacturing techniques, the effect of dominating process parameters and the resulting characteristic of composites. Apart from this, the article does provide data regarding the range of dominating process parameters and resulting mechanical properties of different grades of manufactured MMC. Using this data along with the comparative study, various industries and academicians will be able to select the appropriate techniques for manufacturing MMC.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy