SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Paterson J) ;pers:(Paterson Ross W)"

Search: WFRF:(Paterson J) > Paterson Ross W

  • Result 1-10 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Paterson, Ross W, et al. (author)
  • Serum and cerebrospinal fluid biomarker profiles in acute SARS-CoV-2-associated neurological syndromes.
  • 2021
  • In: Brain communications. - : Oxford University Press (OUP). - 2632-1297. ; 3:3
  • Journal article (peer-reviewed)abstract
    • Preliminary pathological and biomarker data suggest that SARS-CoV-2 infection can damage the nervous system. To understand what, where and how damage occurs, we collected serum and CSF from patients with COVID-19 and characterized neurological syndromes involving the PNS and CNS (n=34). We measured biomarkers of neuronal damage and neuroinflammation, and compared these with non-neurological control groups, which included patients with (n=94) and without (n=24) COVID-19. We detected increased concentrations of neurofilament light, a dynamic biomarker of neuronal damage, in the CSF of those with CNS inflammation (encephalitis and acute disseminated encephalomyelitis) [14800pg/ml (400, 32400)], compared to those with encephalopathy [1410pg/ml (756, 1446)], peripheral syndromes (Guillain-Barré syndrome) [740pg/ml (507, 881)] and controls [872pg/ml (654, 1200)]. Serum neurofilament light levels were elevated across patients hospitalized with COVID-19, irrespective of neurological manifestations. There was not the usual close correlation between CSF and serum neurofilament light, suggesting serum neurofilament light elevation in the non-neurological patients may reflect peripheral nerve damage in response to severe illness. We did not find significantly elevated levels of serum neurofilament light in community cases of COVID-19 arguing against significant neurological damage. Glial fibrillary acidic protein, a marker of astrocytic activation, was not elevated in the CSF or serum of any group, suggesting astrocytic activation is not a major mediator of neuronal damage in COVID-19.
  •  
2.
  • Alawode, Deborah O T, et al. (author)
  • Transitioning from cerebrospinal fluid to blood tests to facilitate diagnosis and disease monitoring in Alzheimer's disease.
  • 2021
  • In: Journal of internal medicine. - : Wiley. - 1365-2796 .- 0954-6820. ; 290:3, s. 583-601
  • Journal article (peer-reviewed)abstract
    • Alzheimer's disease (AD) is increasingly prevalent worldwide, and disease-modifying treatments may soon be at hand; hence now, more than ever, there is a need to develop techniques that allow earlier and more secure diagnosis. Current biomarker-based guidelines for AD diagnosis, which have replaced the historical symptom-based guidelines, rely heavily on neuroimaging and cerebrospinal fluid (CSF) sampling. Whilst these have greatly improved the diagnostic accuracy of AD pathophysiology, they are less practical for application in primary care, population-based and epidemiological settings, or where resources are limited. In contrast, blood is a more accessible and cost-effective source of biomarkers in AD. In this review paper, using the recently proposed amyloid, tau and neurodegeneration [AT(N)] criteria as a framework towards a biological definition of AD, we discuss recent advances in biofluid-based biomarkers, with a particular emphasis on those with potential to be translated into blood-based biomarkers. We provide an overview of the research conducted both in CSF and in blood to draw conclusions on biomarkers that show promise. Given the evidence collated in this review, plasma neurofilament light chain (N), and phosphorylated tau (p-tau; T) show particular potential for translation into clinical practice. However, p-tau requires more comparisons to be conducted between its various epitopes before conclusions can be made as to which one most robustly differentiates AD from non-AD dementias. Plasma amyloid beta (A) would prove invaluable as an early screening modality, but it requires very precise tests and robust pre-analytical protocols.
  •  
3.
  • Coenen, Mirthe, et al. (author)
  • Spatial distributions of white matter hyperintensities on brain MRI: A pooled analysis of individual participant data from 11 memory clinic cohorts
  • 2023
  • In: NeuroImage. Clinical. - 2213-1582. ; 40
  • Journal article (peer-reviewed)abstract
    • INTRODUCTION: The spatial distribution of white matter hyperintensities (WMH) on MRI is often considered in the diagnostic evaluation of patients with cognitive problems. In some patients, clinicians may classify WMH patterns as "unusual", but this is largely based on expert opinion, because detailed quantitative information about WMH distribution frequencies in a memory clinic setting is lacking. Here we report voxel wise 3D WMH distribution frequencies in a large multicenter dataset and also aimed to identify individuals with unusual WMH patterns. METHODS: Individual participant data (N=3525, including 777 participants with subjective cognitive decline, 1389 participants with mild cognitive impairment and 1359 patients with dementia) from eleven memory clinic cohorts, recruited through the Meta VCI Map Consortium, were used. WMH segmentations were provided by participating centers or performed in Utrecht and registered to the Montreal Neurological Institute (MNI)-152 brain template for spatial normalization. To determine WMH distribution frequencies, we calculated WMH probability maps at voxel level. To identify individuals with unusual WMH patterns, region-of-interest (ROI) based WMH probability maps, rule-based scores, and a machine learning method (Local Outlier Factor (LOF)), were implemented. RESULTS: WMH occurred in 82% of voxels from the white matter template with large variation between subjects. Only a small proportion of the white matter (1.7%), mainly in the periventricular areas, was affected by WMH in at least 20% of participants. A large portion of the total white matter was affected infrequently. Nevertheless, 93.8% of individual participants had lesions in voxels that were affected in less than 2% of the population, mainly located in subcortical areas. Only the machine learning method effectively identified individuals with unusual patterns, in particular subjects with asymmetric WMH distribution or with WMH at relatively rarely affected locations despite common locations not being affected. DISCUSSION: Aggregating data from several memory clinic cohorts, we provide a detailed 3D map of WMH lesion distribution frequencies, that informs on common as well as rare localizations. The use of data-driven analysis with LOF can be used to identify unusual patterns, which might serve as an alert that rare causes of WMH should be considered.
  •  
4.
  • Ehrenberg, Alexander J., et al. (author)
  • Relevance of biomarkers across different neurodegenerative
  • 2020
  • In: Alzheimer's Research and Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 12
  • Research review (peer-reviewed)abstract
    • Background: The panel of fluid- and imaging-based biomarkers available for neurodegenerative disease research is growing and has the potential to close important gaps in research and the clinic. With this growth and increasing use, appropriate implementation and interpretation are paramount. Various biomarkers feature nuanced differences in strengths, limitations, and biases that must be considered when investigating disease etiology and clinical utility. For example, neuropathological investigations of Alzheimer's disease pathogenesis can fall in disagreement with conclusions reached by biomarker-based investigations. Considering the varied strengths, limitations, and biases of different research methodologies and approaches may help harmonize disciplines within the neurodegenerative disease field. Purpose of review: Along with separate review articles covering fluid and imaging biomarkers in this issue of Alzheimer's Research and Therapy, we present the result of a discussion from the 2019 Biomarkers in Neurodegenerative Diseases course at the University College London. Here, we discuss themes of biomarker use in neurodegenerative disease research, commenting on appropriate use, interpretation, and considerations for implementation across different neurodegenerative diseases. We also draw attention to areas where biomarker use can be combined with other disciplines to understand issues of pathophysiology and etiology underlying dementia. Lastly, we highlight novel modalities that have been proposed in the landscape of neurodegenerative disease research and care.
  •  
5.
  • Paterson, Ross W, et al. (author)
  • Cerebrospinal fluid in the differential diagnosis of Alzheimer's disease: clinical utility of an extended panel of biomarkers in a specialist cognitive clinic
  • 2018
  • In: Alzheimer's research & therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 10, s. 1-11
  • Journal article (peer-reviewed)abstract
    • Cerebrospinal fluid (CSF) biomarkers are increasingly being used to support a diagnosis of Alzheimer's disease (AD). Their clinical utility for differentiating AD from non-AD neurodegenerative dementias, such as dementia with Lewy bodies (DLB) or frontotemporal dementia (FTD), is less well established. We aimed to determine the diagnostic utility of an extended panel of CSF biomarkers to differentiate AD from a range of other neurodegenerative dementias.We used immunoassays to measure conventional CSF markers of amyloid and tau pathology (amyloid beta (Aβ)1-42, total tau (T-tau), and phosphorylated tau (P-tau)) as well as amyloid processing (AβX-38, AβX-40, AβX-42, soluble amyloid precursor protein (sAPP)α, and sAPPβ), large fibre axonal degeneration (neurofilament light chain (NFL)), and neuroinflammation (YKL-40) in 245 patients with a variety of dementias and 30 controls. Patients fulfilled consensus criteria for AD (n=156), DLB (n=20), behavioural variant frontotemporal dementia (bvFTD; n=45), progressive non-fluent aphasia (PNFA; n=17), and semantic dementia (SD; n=7); approximately 10% were pathology/genetically confirmed (n=26). Global tests based on generalised least squares regression were used to determine differences between groups. Non-parametric receiver operating characteristic (ROC) curves and area under the curve (AUC) analyses were used to quantify how well each biomarker discriminated AD from each of the other diagnostic groups (or combinations of groups). CSF cut-points for the major biomarkers found to have diagnostic utility were validated using an independent cohort which included causes of AD (n=104), DLB (n=5), bvFTD (n=12), PNFA (n=3), SD (n=9), and controls (n=10).There were significant global differences in Aβ1-42, T-tau, T-tau/Aβ1-42 ratio, P-tau-181, NFL, AβX-42, AβX-42/X-40 ratio, APPα, and APPβ between groups. At a fixed sensitivity of 85%, AβX-42/X-40 could differentiate AD from controls, bvFTD, and SD with specificities of 93%, 85%, and 100%, respectively; for T-tau/Aβ1-42 these specificities were 83%, 70%, and 86%. AβX-42/X-40 had similar or higher specificity than Aβ1-42. No biomarker or ratio could differentiate AD from DLB or PNFA with specificity >50%. Similar sensitivities and specificities were found in the independent validation cohort for differentiating AD and other dementias and in a pathology/genetically confirmed sub-cohort.CSF AβX-42/X-40 and T-tau/Aβ1-42 ratios have utility in distinguishing AD from controls, bvFTD, and SD. None of the biomarkers tested had good specificity at distinguishing AD from DLB or PNFA.
  •  
6.
  • Leckey, Claire A, et al. (author)
  • CSF neurofilament light chain profiling and quantitation in neurological diseases.
  • 2024
  • In: Brain communications. - 2632-1297. ; 6:3
  • Journal article (peer-reviewed)abstract
    • Neurofilament light chain is an established marker of neuroaxonal injury that is elevated in CSF and blood across various neurological diseases. It is increasingly used in clinical practice to aid diagnosis and monitor progression and as an outcome measure to assess safety and efficacy of disease-modifying therapies across the clinical translational neuroscience field. Quantitative methods for neurofilament light chain in human biofluids have relied on immunoassays, which have limited capacity to describe the structure of the protein in CSF and how this might vary in different neurodegenerative diseases. In this study, we characterized and quantified neurofilament light chain species in CSF across neurodegenerative and neuroinflammatory diseases and healthy controls using targeted mass spectrometry. We show that the quantitative immunoprecipitation-tandem mass spectrometry method developed in this study strongly correlates to single-molecule array measurements in CSF across the broad spectrum of neurodegenerative diseases and was replicable across mass spectrometry methods and centres. In summary, we have created an accurate and cost-effective assay for measuring a key biomarker in translational neuroscience research and clinical practice, which can be easily multiplexed and translated into clinical laboratories for the screening and monitoring of neurodegenerative disease or acute brain injury.
  •  
7.
  • Paterson, Ross W, et al. (author)
  • Dissecting IWG-2 typical and atypical Alzheimer's disease: insights from cerebrospinal fluid analysis.
  • 2015
  • In: Journal of neurology. - : Springer Science and Business Media LLC. - 1432-1459 .- 0340-5354. ; 262, s. 2722-2730
  • Journal article (peer-reviewed)abstract
    • Pathobiological factors underlying phenotypic diversity in Alzheimer's disease (AD) are incompletely understood. We used an extended cerebrospinal fluid (CSF) panel to explore differences between "typical" with "atypical" AD and between amnestic, posterior cortical atrophy, logopenic aphasia and frontal variants. We included 97 subjects fulfilling International Working Group-2 research criteria for AD of whom 61 had "typical" AD and 36 "atypical" syndromes, and 30 controls. CSF biomarkers included total tau (T-tau), phosphorylated tau (P-tau), amyloid β1-42, amyloid βX-38/40/42, YKL-40, neurofilament light (NFL), and amyloid precursor proteins α and β. The typical and atypical groups were matched for age, sex, severity and rate of cognitive decline and had similar biomarker profiles, with the exception of NFL which was higher in the atypical group (p=0.03). Sub-classifying the atypical group into its constituent clinical syndromes, posterior cortical atrophy was associated with the lowest T-tau [604.4 (436.8-675.8) pg/mL], P-tau (79.8±21.8pg/L), T-tau/Aβ1-42 ratio [2.3 (1.4-2.6)], AβX-40/X-42 ratio (22.1±5.8) and rate of cognitive decline [1.9 (0.75-4.25) MMSE points/year]. Conversely, the frontal variant group had the highest levels of T-tau [1185.4 (591.7-1329.3) pg/mL], P-tau (116.4±45.4pg/L), T-tau/Aβ1-42 ratio [5.2 (3.3-6.9)] and AβX-40/X-42 ratio (27.9±7.5), and rate of cognitive decline. Whilst on a group level IWG-2 "typical" and "atypical" AD share similar CSF profiles, which are very different from controls, atypical AD is a heterogeneous entity with evidence for subtle differences in amyloid processing and neurodegeneration between different clinical syndromes. These findings also have practical implications for the interpretation of clinical CSF biomarker results.
  •  
8.
  • Weston, Philip S J, et al. (author)
  • Diagnosing Dementia in the Clinical Setting: Can Amyloid PET Provide Additional Value Over Cerebrospinal Fluid?
  • 2016
  • In: Journal of Alzheimer's disease : JAD. - 1875-8908. ; 54:4, s. 1297-1302
  • Journal article (peer-reviewed)abstract
    • Cerebrospinal fluid (CSF) measures of amyloid and tau are the first-line Alzheimer's disease biomarkers in many clinical centers. We assessed if and when the addition of amyloid PET following CSF measurements provides added diagnostic value. Twenty patients from a cognitive clinic, who had undergone detailed assessment including CSF measures, went on to have amyloid PET. The treating neurologist's working diagnosis, and degree of diagnostic certainty, was assessed both before and after the PET. Amyloid PET changed the diagnosis in 7/20 cases. Amyloid PET can provide added diagnostic value, particularly in young-onset, atypical dementias, where CSF results are borderline and diagnostic uncertainty remains.
  •  
9.
  • Banerjee, Gargi, et al. (author)
  • Cerebrospinal Fluid Biomarkers in Cerebral Amyloid Angiopathy.
  • 2020
  • In: Journal of Alzheimer's disease : JAD. - 1875-8908. ; 74:4, s. 1189-1201
  • Journal article (peer-reviewed)abstract
    • There is limited data on cerebrospinal fluid (CSF) biomarkers in sporadic amyloid-β (Aβ) cerebral amyloid angiopathy (CAA).To determine the profile of biomarkers relevant to neurodegenerative disease in the CSF of patients with CAA.We performed a detailed comparison of CSF markers, comparing patients with CAA, Alzheimer's disease (AD), and control (CS) participants, recruited from the Biomarkers and Outcomes in CAA (BOCAA) study, and a Specialist Cognitive Disorders Service.We included 10 CAA, 20 AD, and 10 CS participants (mean age 68.6, 62.5, and 62.2 years, respectively). In unadjusted analyses, CAA patients had a distinctive CSF biomarker profile, with significantly lower (p<0.01) median concentrations of Aβ38, Aβ40, Aβ42, sAβPPα, and sAβPPβ. CAA patients had higher levels of neurofilament light (NFL) than the CS group (p<0.01), but there were no significant differences in CSF total tau, phospho-tau, soluble TREM2 (sTREM2), or neurogranin concentrations. AD patients had higher total tau, phospho-tau and neurogranin than CS and CAA groups. In age-adjusted analyses, differences for the CAA group remained for Aβ38, Aβ40, Aβ42, and sAβPPβ. Comparing CAA patients with amyloid-PET positive (n=5) and negative (n=5) scans, PET positive individuals had lower (p<0.05) concentrations of CSF Aβ42, and higher total tau, phospho-tau, NFL, and neurogranin concentrations, consistent with an "AD-like" profile.CAA has a characteristic biomarker profile, suggestive of a global, rather than selective, accumulation of amyloid species; we also provide evidence of different phenotypes according to amyloid-PET positivity. Further replication and validation of these preliminary findings in larger cohorts is needed.
  •  
10.
  • Bridel, Claire, et al. (author)
  • Diagnostic Value of Cerebrospinal Fluid Neurofilament Light Protein in Neurology : A Systematic Review and Meta-analysis
  • 2019
  • In: JAMA Neurology. - : American Medical Association (AMA). - 2168-6149 .- 2168-6157. ; 76:9, s. 1035-1048
  • Research review (peer-reviewed)abstract
    • Importance  Neurofilament light protein (NfL) is elevated in cerebrospinal fluid (CSF) of a number of neurological conditions compared with healthy controls (HC) and is a candidate biomarker for neuroaxonal damage. The influence of age and sex is largely unknown, and levels across neurological disorders have not been compared systematically to date.Objectives  To assess the associations of age, sex, and diagnosis with NfL in CSF (cNfL) and to evaluate its potential in discriminating clinically similar conditions.Data Sources  PubMed was searched for studies published between January 1, 2006, and January 1, 2016, reporting cNfL levels (using the search terms neurofilament light and cerebrospinal fluid) in neurological or psychiatric conditions and/or in HC.Study Selection  Studies reporting NfL levels measured in lumbar CSF using a commercially available immunoassay, as well as age and sex.Data Extraction and Synthesis  Individual-level data were requested from study authors. Generalized linear mixed-effects models were used to estimate the fixed effects of age, sex, and diagnosis on log-transformed NfL levels, with cohort of origin modeled as a random intercept.Main Outcome and Measure  The cNfL levels adjusted for age and sex across diagnoses.Results  Data were collected for 10 059 individuals (mean [SD] age, 59.7 [18.8] years; 54.1% female). Thirty-five diagnoses were identified, including inflammatory diseases of the central nervous system (n = 2795), dementias and predementia stages (n = 4284), parkinsonian disorders (n = 984), and HC (n = 1332). The cNfL was elevated compared with HC in a majority of neurological conditions studied. Highest levels were observed in cognitively impaired HIV-positive individuals (iHIV), amyotrophic lateral sclerosis, frontotemporal dementia (FTD), and Huntington disease. In 33.3% of diagnoses, including HC, multiple sclerosis, Alzheimer disease (AD), and Parkinson disease (PD), cNfL was higher in men than women. The cNfL increased with age in HC and a majority of neurological conditions, although the association was strongest in HC. The cNfL overlapped in most clinically similar diagnoses except for FTD and iHIV, which segregated from other dementias, and PD, which segregated from atypical parkinsonian syndromes.Conclusions and Relevance  These data support the use of cNfL as a biomarker of neuroaxonal damage and indicate that age-specific and sex-specific (and in some cases disease-specific) reference values may be needed. The cNfL has potential to assist the differentiation of FTD from AD and PD from atypical parkinsonian syndromes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 15
Type of publication
journal article (11)
research review (4)
Type of content
peer-reviewed (14)
other academic/artistic (1)
Author/Editor
Schott, Jonathan M (13)
Zetterberg, Henrik, ... (11)
Fox, Nick C (8)
Blennow, Kaj, 1958 (5)
Keshavan, Ashvini (5)
show more...
Ashton, Nicholas J. (4)
Heslegrave, Amanda (3)
Toombs, Jamie (3)
Heslegrave, Amanda J (3)
Weston, Philip S J (3)
Pereira, Joana B. (2)
Kuhle, Jens (1)
Wallin, Anders, 1950 (1)
Gisslén, Magnus, 196 ... (1)
Landén, Mikael, 1966 (1)
Pannee, Josef, 1979 (1)
Lycke, Jan, 1956 (1)
Maass, Anne (1)
Berron, David (1)
Khademi, Mohsen (1)
Olsson, Tomas (1)
Piehl, Fredrik (1)
Wikkelsö, Carsten, 1 ... (1)
Portelius, Erik, 197 ... (1)
Johannsson, Gudmundu ... (1)
Hansson, Oskar (1)
Janelidze, Shorena (1)
Blennow, Kaj (1)
Mattsson-Carlgren, N ... (1)
van der Flier, Wiesj ... (1)
Teunissen, Charlotte ... (1)
Barkhof, Frederik (1)
Leinonen, Ville (1)
Xin, Xu (1)
Axelsson, Markus, 19 ... (1)
Forsgren, Lars (1)
Svenningsson, Anders (1)
Christensen, Jeppe R ... (1)
Alawode, Deborah O T (1)
Karikari, Thomas (1)
Simrén, Joel, 1996 (1)
Montoliu-Gaya, Laia (1)
O Connor, Antoinette (1)
Lantero Rodriguez, J ... (1)
Snellman, Anniina (1)
Gobom, Johan (1)
Burman, Joachim, 197 ... (1)
Ewers, Michael (1)
Venketasubramanian, ... (1)
show less...
University
University of Gothenburg (15)
Lund University (3)
Karolinska Institutet (3)
Uppsala University (1)
Örebro University (1)
Language
English (15)
Research subject (UKÄ/SCB)
Medical and Health Sciences (14)
Natural sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view