1. |
- Hamdi, Yosr, et al.
(författare)
-
Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression : identification of a modifier of breast cancer risk at locus 11q22.3
- 2017
-
Ingår i: Breast Cancer Research and Treatment. - : Springer Science and Business Media LLC. - 0167-6806 .- 1573-7217. ; 161:1, s. 117-134
-
Tidskriftsartikel (refereegranskat)abstract
- Purpose: Cis-acting regulatory SNPs resulting in differential allelic expression (DAE) may, in part, explain the underlying phenotypic variation associated with many complex diseases. To investigate whether common variants associated with DAE were involved in breast cancer susceptibility among BRCA1 and BRCA2 mutation carriers, a list of 175 genes was developed based of their involvement in cancer-related pathways. Methods: Using data from a genome-wide map of SNPs associated with allelic expression, we assessed the association of ~320 SNPs located in the vicinity of these genes with breast and ovarian cancer risks in 15,252 BRCA1 and 8211 BRCA2 mutation carriers ascertained from 54 studies participating in the Consortium of Investigators of Modifiers of BRCA1/2. Results: We identified a region on 11q22.3 that is significantly associated with breast cancer risk in BRCA1 mutation carriers (most significant SNP rs228595 p = 7 × 10−6). This association was absent in BRCA2 carriers (p = 0.57). The 11q22.3 region notably encompasses genes such as ACAT1, NPAT, and ATM. Expression quantitative trait loci associations were observed in both normal breast and tumors across this region, namely for ACAT1, ATM, and other genes. In silico analysis revealed some overlap between top risk-associated SNPs and relevant biological features in mammary cell data, which suggests potential functional significance. Conclusion: We identified 11q22.3 as a new modifier locus in BRCA1 carriers. Replication in larger studies using estrogen receptor (ER)-negative or triple-negative (i.e., ER-, progesterone receptor-, and HER2-negative) cases could therefore be helpful to confirm the association of this locus with breast cancer risk.
|
|
2. |
- Hollestelle, Antoinette, et al.
(författare)
-
No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer
- 2016
-
Ingår i: Gynecologic Oncology. - : Elsevier BV. - 0090-8258 .- 1095-6859. ; 141:2, s. 386-401
-
Tidskriftsartikel (refereegranskat)abstract
- Objective Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3′ UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies, emphasizing particular subgroups, were relatively small. Therefore, we comprehensively evaluated ovarian and breast cancer risks as well as clinical outcome associated with rs61764370. Methods Centralized genotyping and analysis were performed for 140,012 women enrolled in the Ovarian Cancer Association Consortium (15,357 ovarian cancer patients; 30,816 controls), the Breast Cancer Association Consortium (33,530 breast cancer patients; 37,640 controls), and the Consortium of Modifiers of BRCA1 and BRCA2 (14,765 BRCA1 and 7904 BRCA2 mutation carriers). Results We found no association with risk of ovarian cancer (OR = 0.99, 95% CI 0.94-1.04, p = 0.74) or breast cancer (OR = 0.98, 95% CI 0.94-1.01, p = 0.19) and results were consistent among mutation carriers (BRCA1, ovarian cancer HR = 1.09, 95% CI 0.97-1.23, p = 0.14, breast cancer HR = 1.04, 95% CI 0.97-1.12, p = 0.27; BRCA2, ovarian cancer HR = 0.89, 95% CI 0.71-1.13, p = 0.34, breast cancer HR = 1.06, 95% CI 0.94-1.19, p = 0.35). Null results were also obtained for associations with overall survival following ovarian cancer (HR = 0.94, 95% CI 0.83-1.07, p = 0.38), breast cancer (HR = 0.96, 95% CI 0.87-1.06, p = 0.38), and all other previously-reported associations. Conclusions rs61764370 is not associated with risk of ovarian or breast cancer nor with clinical outcome for patients with these cancers. Therefore, genotyping this variant has no clinical utility related to the prediction or management of these cancers.
|
|
3. |
- Moghadasi, Setareh, et al.
(författare)
-
The BRCA1 c. 5096G > A p.Arg1699Gln (R1699Q) intermediate risk variant : breast and ovarian cancer risk estimation and recommendations for clinical management from the ENIGMA consortium
- 2018
-
Ingår i: Journal of Medical Genetics. - : BMJ PUBLISHING GROUP. - 0022-2593 .- 1468-6244. ; 55:1, s. 15-20
-
Tidskriftsartikel (refereegranskat)abstract
- Background: We previously showed that the BRCA1 variant c. 5096G> A p.Arg1699Gln (R1699Q) was associated with an intermediate risk of breast cancer (BC) and ovarian cancer (OC). This study aimed to assess these cancer risks for R1699Q carriers in a larger cohort, including follow-up of previously studied families, to further define cancer risks and to propose adjusted clinical management of female BRCA1* R1699Q carriers.Methods: Data were collected from 129 BRCA1* R1699Q families ascertained internationally by ENIGMA (Evidence-based Network for the Interpretation of Germline Mutant Alleles) consortium members. A modified segregation analysis was used to calculate BC and OC risks. Relative risks were calculated under both monogenic model and major gene plus polygenic model assumptions.Results: In this cohort the cumulative risk of BC and OC by age 70 years was 20% and 6%, respectively. The relative risk for developing cancer was higher when using a model that included the effects of both the R1699Q variant and a residual polygenic component compared with monogenic model (for BC 3.67 vs 2.83, and for OC 6.41 vs 5.83).Conclusion: O ur results confirm that BRCA1* R1699Q confers an intermediate risk for BC and OC. Breast surveillance for female carriers based on mammogram annually from age 40 is advised. Bilateral salpingooophorectomy should be considered based on family history.
|
|
4. |
- Osorio, Ana, et al.
(författare)
-
DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers.
- 2014
-
Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 10:4
-
Tidskriftsartikel (refereegranskat)abstract
- Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2). Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2) gene (HR: 1.09, 95% CI (1.03-1.16), p = 2.7×10-3) for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase) gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03-1.21, p = 4.8×10-3). DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied.
|
|
5. |
|
|
6. |
- Thomassen, Mads, et al.
(författare)
-
A BRCA2 mutation incorrectly mapped in the original BRCA2 reference sequence, is a common West Danish founder mutation disrupting mRNA splicing
- 2011
-
Ingår i: Breast Cancer Research and Treatment. - : Springer Science and Business Media LLC. - 1573-7217 .- 0167-6806. ; 128:1, s. 179-185
-
Tidskriftsartikel (refereegranskat)abstract
- Inherited mutations in the tumor suppressor genes BRCA1 and BRCA2 predispose carriers to breast and ovarian cancer. The authors have identified a mutation in BRCA2, 7845+1G > A (c.7617+1G > A), not previously regarded as deleterious because of incorrect mapping of the splice junction in the originally published genomic reference sequence. This reference sequence is generally used in many laboratories and it maps the mutation 16 base pairs inside intron 15. However, according to the recent reference sequences the mutation is located in the consensus donor splice sequence. By reverse transcriptase analysis, loss of exon 15 in the final transcript interrupting the open reading frame was demonstrated. Furthermore, the mutation segregates with a cancer phenotype in 18 Danish families. By genetic analysis of more than 3,500 Danish breast/ovarian cancer risk families, the mutation was identified as the most common BRCA2 mutation in West Denmark, while it is rare in Central and East Denmark and not identified in South Sweden. Haplotype analysis using dense SNP arrays indicated a common founder of the mutation approximately 1,500 years ago.
|
|
7. |
- Thomassen, Mads, et al.
(författare)
-
BRCA1 and BRCA2 mutations in Danish families with hereditary breast and/or ovarian cancer
- 2008
-
Ingår i: Acta Oncologica. - : Informa UK Limited. - 1651-226X .- 0284-186X. ; 47:4, s. 772-777
-
Tidskriftsartikel (refereegranskat)abstract
- A national study of BRCA1 and BRCA2 mutations in Danish HBOC (Hereditary Breast Ovarian Cancer) families revealed a total number of 322 mutation positive families, 206 (64%) BRCA1 and 116 (36%) BRCA2 positive families from a population of 5.5 million inhabitants. Seven hundred and twenty six mutation positive individuals were identified: 402 female BRCAl carriers, 79 male BRCAl carriers, 213 female BRCA2 carriers, and 32 male BRCA2 carriers by April 2006. Most of the mutations were frame shift or nonsense mutations, while large genomic rearrangements were rare. Most mutations were only identified in one family. A few mutations were detected repeatedly. In BRCAl the most common mutations were: 2594delC in 32 families (16%), 3438G > T in 19 families (9%), 5382insC in 16 families (8%), 3829delT in 11 families (5%). In BRCA2 the most common mutations were: 6601delA in 13 families (11%), 1538del4 in 12 families (10%), 6714del4 in 10 families (9%). There was a tendency towards a higher frequency of BRCA2 mutations in West Denmark compared to East Denmark. The frequencies of specific BRCA1 and BRCA2 mutations were slightly different in the two regions. The mutations occurring in West Denmark have also been observed in other Scandinavian countries whereas the mutations occurring in East Denmark were more often reported from other European countries and the Baltic countries. The pattern of mutation distributions are comparable with observations from other Scandinavian and European studies and indicate that the Danish BRCAl and BRCA2 mutations are a mixture of Scandinavian mutations and other European mutations including two of the Ashkenazi mutations. Even though a tendency towards founder mutations was observed most mutations were only detected once. Based on these observations we recommend that the mutation screening strategy of the BRCA1 and BRCA2 genes in Danish HBOC families comprises full screening of both genes including analysis for large genomic rearrangements.
|
|
8. |
- Vigorito, Elena, et al.
(författare)
-
Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers
- 2016
-
Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:7
-
Tidskriftsartikel (refereegranskat)abstract
- Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA2 mutation carriers respectively, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95% CI: 0.68 to 0.79, p-value 2x 10-16). These variants were located up to 20 kb upstream of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95% CI: 0.59 to 0.80, p-value 1.0 x 10-6). The candidate causal in BRCA1 mutation carriers did not include the strongest associated variant at this locus in the general population. In sum, we identified a set of candidate causal variants in a region that encompasses the BNC2 transcription start site. The ovarian cancer association at 9p22.2 may be mediated by different variants in BRCA1 mutation carriers and in the general population. Thus, potentially different mechanisms may underlie ovarian cancer risk for mutation carriers and the general population.
|
|