SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pedersen J) ;lar1:(nrm)"

Sökning: WFRF:(Pedersen J) > Naturhistoriska riksmuseet

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • A. Marques, Ana F., et al. (författare)
  • The Seven Sisters Hydrothermal System : First Record of Shallow Hybrid Mineralization Hosted in Mafic Volcaniclasts on the Arctic Mid-Ocean Ridge
  • 2020
  • Ingår i: Minerals. - : MDPI AG. - 2075-163X.
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • We document the discovery of an active, shallow, seafloor hydrothermal system (known as the Seven Sisters Vent Field) hosted in mafic volcaniclasts at a mid-ocean ridge setting. The vent field is located at the southern part of the Arctic mid-ocean ridge where it lies on top of a flat-topped volcano at ~130 m depth. Up to 200 deg C phase-separating fluids vent from summit depressions in the volcano, and from pinnacle-like edifices on top of large hydrothermal mounds. The hydrothermal mineralization at Seven Sisters manifests as a replacement of mafic volcaniclasts, as direct intraclast precipitation from the hydrothermal fluid, and as elemental sulfur deposition within orifices. Barite is ubiquitous, and is sequentially replaced by pyrite, which is the first sulfide to form, followed by Zn-Cu-Pb-Ag bearing sulfides, sulfosalts, and silica. The mineralized rocks at Seven Sisters contain highly anomalous concentrations of ‘epithermal suite’ elements such as Tl, As, Sb and Hg, with secondary alteration assemblages including silica and dickite. Vent fluids have a pH of ~5 and are Ba and metal depleted. Relatively high dissolved Si (~7.6 mmol/L Si) combined with low (0.2–0.4) Fe/Mn suggest high-temperature reactions at ~150 bar. A delta-13C value of -5.4 permil in CO2 dominated fluids denotes magmatic degassing from a relatively undegassed reservoir. Furthermore, low CH4 and H2 (<0.026 mmol/kg and <0.009 mmol/kg, respectively) and 3He/4He of ~8.3 R/Racorr support a MORB-like, sediment-free fluid signature from an upper mantle source. Sulfide and secondary alteration mineralogy, fluid and gas chemistry, as well as delta-34S and 87Sr/86Sr values in barite and pyrite indicate that mineralization at Seven Sisters is sustained by the input of magmatic fluids with minimal seawater contribution. 226Ra/Ba radiometric dating of the barite suggests that this hydrothermal system has been active for at least 4670 +/- 60 yr.
  •  
2.
  •  
3.
  • de Jong, Yde, et al. (författare)
  • PESI - a taxonomic backbone for Europe
  • 2015
  • Ingår i: Biodiversity Data Journal. - 1314-2836 .- 1314-2828. ; 3, s. 1-51
  • Tidskriftsartikel (refereegranskat)abstract
    • Reliable taxonomy underpins communication in all of biology, not least nature conservation and sustainable use of ecosystem resources. The flexibility of taxonomic interpretations, however, presents a serious challenge for end-users of taxonomic concepts. Users need standardised and continuously harmonised taxonomic reference systems, as well as high-quality and complete taxonomic data sets, but these are generally lacking for non-specialists. The solution is in dynamic, expertly curated web-based taxonomic tools.The Pan-European Species-directories Infrastructure (PESI) worked to solve this key issue by providing a taxonomic e-infrastructure for Europe. It strengthened the relevant social (expertise) and information (standards, data and technical) capacities of five major community networks on taxonomic indexing in Europe, which is essential for proper biodiversity assessment and monitoring activities. The key objectives of PESI were: 1) standardisation in taxonomic reference systems, 2) enhancement of the quality and completeness of taxonomic data sets and 3) creation of integrated access to taxonomic information.This paper describes the results of PESI and its future prospects, including the involvement in major European biodiversity informatics initiatives and programs.
  •  
4.
  • Halldórsson, Sæmundur A., et al. (författare)
  • Petrology and geochemistry of the 2014–2015 Holuhraun eruption, central Iceland : compositional and mineralogical characteristics, temporal variability and magma storage
  • 2018
  • Ingår i: Contributions to Mineralogy and Petrology. - : Springer Science and Business Media LLC. - 0010-7999 .- 1432-0967. ; 173:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The 2014–2015 Holuhraun fissure eruption provided a rare opportunity to study in detail the magmatic processes and magma plumbing system dynamics during a 6-month-long, moderate- to large-volume basaltic fissure eruption. In this contribution, we present a comprehensive dataset, including major and trace elements of whole-rock and glassy tephra samples, mineral chemistry, and radiogenic and oxygen isotope analyses from an extensive set of samples (n = 62) that were collected systematically in several field campaigns throughout the entire eruptive period. We also present the first detailed chemical and isotopic characterization of magmatic sulfides from Iceland. In conjunction with a unique set of geophysical data, our approach provides a detailed temporal and spatial resolution of magmatic processes before and during this eruption. The 2014–2015 Holuhraun magma is compositionally indistinguishable from recent basalts erupted from the Bárðarbunga volcanic system, consistent with seismic observations for magma ascent close to the Bárðarbunga central volcano, followed by dyke propagation to the Holuhraun eruption site. Whole-rock elemental and isotopic compositions are remarkably constant throughout the eruption. Moreover, the inferred depth of the magma reservoir tapped during the eruption is consistently 8 ± 5 km, in agreement with geodetic observations and melt inclusion entrapment pressures, but inconsistent with vertically extensive multi-tiered magma storage prior to eruption. The near constancy in the chemical and isotopic composition of the lava is consistent with the efficient homogenization of mantle-derived compositional variability. In contrast, occurrence of different mineral populations, including sulfide globules, which display significant compositional variability, requires a more complex earlier magmatic history. This may include sampling of heterogeneous mantle melts that mixed, crystallized and finally homogenized at mid- to lower-crustal conditions.
  •  
5.
  •  
6.
  • Rydland Pedersen, L.-E., et al. (författare)
  • A multiple sulfur isotope study through the volcanic section of the Troodos ophiolite.
  • 2017
  • Ingår i: Chemical Geology. - : Elsevier BV. - 0009-2541 .- 1872-6836. ; 468, s. 49-62
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple S isotope systematics (δ34S and Δ33S) and high resolution in-situ S isotope measurements offer new perspectives on the study of biological and abiotic cycling of sulfur in hydrothermal systems. We applied these techniques to the Tethyian Troodos ophiolite (91 Ma) from Cyprus, one of the best-preserved remnants of oceanic crust in the world, using materials from deep drill cores and surface sampling. We focused on the volcanic section of the ophiolite, including the hydrothermal massive sulfide deposit at Agrokipia, which represents a fossil zone of high-temperature fluid upwelling, and the Akaki river section which displays a range of lower temperature alteration types.The δ34S and Δ33S values of bulk and SIMS (secondary ion mass spectrometry) analyses from the Agrokipia sulfide deposits show that the sulfide minerals are largely derived from thermochemical reduction of entrained seawater sulfate and leached H2S from the “root zone” of hydrothermal upwelling. The contributions of these two sources can vary substantially within individual sulfide grains, indicating a very dynamic mixing between these sulfur sources. Microbial reworking of the sulfide mound is recorded in a sample with very elevated Δ33S values (0.22‰).The Akaki and Agrokipia volcanics experienced low temperature sulfur loss and removal of heavier sulfur isotopes due to partial oxidation by microbes. While some intervals gained sulfur, and have δ34S and Δ33S values indicative of microbial sulfate reduction. REE-data of vein quartz containing pyrite with δ34S = ~− 21‰ implies local ephemeral hydrothermal upwelling in the lower Akaki volcanics, possibly associated with the late stage boninitic magmatic activity in the Troodos ophiolite, suggesting that microbial sulfate reduction in oceanic crust may continue for 10–15 Ma in crustal sections with prolonged igneous activity such as Troodos.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy