SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pereira David M.) ;hsvcat:4"

Search: WFRF:(Pereira David M.) > Agricultural Sciences

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Rader, Romina, et al. (author)
  • Non-bee insects are important contributors to global crop pollination.
  • 2016
  • In: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 113:1, s. 146-151
  • Journal article (peer-reviewed)abstract
    • Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25-50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.
  •  
2.
  • Tavares, Julia, et al. (author)
  • Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests
  • 2023
  • In: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 617:7959, s. 111-117
  • Journal article (peer-reviewed)abstract
    • Tropical forests face increasing climate risk(1,2), yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, ?(50)) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk(3-5), little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters ?(50) and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both ?(50) and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM(50 )forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon(6,7), with strong implications for the Amazon carbon sink.
  •  
3.
  • ter Steege, Hans, et al. (author)
  • Mapping density, diversity and species-richness of the Amazon tree flora
  • 2023
  • In: COMMUNICATIONS BIOLOGY. - 2399-3642. ; 6:1
  • Journal article (peer-reviewed)abstract
    • Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution. A study mapping the tree species richness in Amazonian forests shows that soil type exerts a strong effect on species richness, probably caused by the areas of these forest types. Cumulative water deficit, tree density and temperature seasonality affect species richness at a regional scale.
  •  
4.
  • Vedovato, Laura B., et al. (author)
  • Ancient fires enhance Amazon forest drought resistance
  • 2023
  • In: Frontiers in Forests and Global Change. - : Frontiers Media SA. - 2624-893X. ; 6
  • Journal article (peer-reviewed)abstract
    • Drought and fire reduce productivity and increase tree mortality in tropical forests. Fires also produce pyrogenic carbon (PyC), which persists in situ for centuries to millennia, and represents a legacy of past fires, potentially improving soil fertility and water holding capacity and selecting for the survival and recruitment of certain tree life-history (or successional) strategies. We investigated whether PyC is correlated with physicochemical soil properties, wood density, aboveground carbon (AGC) dynamics and forest resistance to severe drought. To achieve our aim, we used an Amazon-wide, long-term plot network, in forests without known recent fires, integrating site-specific measures of forest dynamics, soil properties and a unique soil PyC concentration database. We found that forests with higher concentrations of soil PyC had both higher soil fertility and lower wood density. Soil PyC was not associated with AGC dynamics in non-drought years. However, during extreme drought events (10% driest years), forests with higher concentrations of soil PyC experienced lower reductions in AGC gains (woody growth and recruitment), with this drought-immunizing effect increasing with drought severity. Forests with a legacy of ancient fires are therefore more likely to continue to grow and recruit under increased drought severity. Forests with high soil PyC concentrations (third quartile) had 3.8% greater AGC gains under mean drought, but 33.7% greater under the most extreme drought than forests with low soil PyC concentrations (first quartile), offsetting losses of up to 0.68 Mg C ha–1yr–1 of AGC under extreme drought events. This suggests that ancient fires have legacy effects on current forest dynamics, by altering soil fertility and favoring tree species capable of continued growth and recruitment during droughts. Therefore, mature forest that experienced fires centuries or millennia ago may have greater resistance to current short-term droughts.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4
Type of publication
journal article (4)
Type of content
peer-reviewed (4)
Author/Editor
Malhi, Yadvinder (3)
Phillips, Oliver L. (3)
Barlow, Jos (2)
Berenguer, Erika (2)
Rundlöf, Maj (1)
Bommarco, Riccardo (1)
show more...
Carvalheiro, Luísa G ... (1)
Baker, Timothy R. (1)
Nilsson, Lovisa (1)
Smith, Henrik (1)
Kleijn, David (1)
Entling, Martin H. (1)
Herzog, Felix (1)
Potts, Simon G. (1)
Bartomeus, Ignasi (1)
Garratt, Michael P.D ... (1)
Mandelik, Yael (1)
Stout, Jane C. (1)
Szentgyörgyi, Hajnal ... (1)
Klein, Alexandra Mar ... (1)
Garibaldi, Lucas A (1)
Rader, Romina (1)
Winfree, Rachael (1)
Brittain, Claire (1)
Andersson, Georg K S (1)
Herbertsson, Lina (1)
Hipólito, Juliana (1)
Carvalho, Fernanda A ... (1)
ter Steege, Hans (1)
Damasco, Gabriel (1)
Aragão, Luiz E. O. C ... (1)
Vedovato, Laura B. (1)
Silva, Camila V. J. (1)
Muscarella, Robert (1)
Balslev, Henrik (1)
Holmgren, Milena (1)
Rowland, Lucy (1)
Bartholomew, David C ... (1)
Hirota, Marina (1)
Lindström, Sandra A. ... (1)
Scheper, Jeroen (1)
Huamantupa-Chuquimac ... (1)
Reemer, Menno (1)
Rivas-Torres, Gonzal ... (1)
Farfan-Rios, William (1)
de Aguiar, Daniel P. ... (1)
Ahuite Reategui, Man ... (1)
Albuquerque, Bianca ... (1)
Alonso, Alfonso (1)
do Amaral, Dário Dan ... (1)
show less...
University
University of Gothenburg (1)
Umeå University (1)
Uppsala University (1)
Lund University (1)
Swedish University of Agricultural Sciences (1)
Language
English (4)
Research subject (UKÄ/SCB)
Natural sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view