SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Perley D. A.) "

Sökning: WFRF:(Perley D. A.)

  • Resultat 1-10 av 89
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Veres, P., et al. (författare)
  • Observation of inverse Compton emission from a long gamma-ray burst
  • 2019
  • Ingår i: Nature. - : NATURE PUBLISHING GROUP. - 0028-0836 .- 1476-4687. ; 575:7783, s. 459-
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-duration gamma-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterized by an initial phase of bright and highly variable radiation in the kiloelectron volt-to-mega electronvoltband, which is probably produced within the jet and lasts from milliseconds to minutes, known as the prompt emission(1,2). Subsequently, the interaction of the jet with the surrounding medium generates shock waves that are responsible for the afterglow emission, which lasts from days to months and occurs over a broad energy range from the radio to the gigaelectronvolt bands(1-6). The afterglow emission is generally well explained as synchrotron radiation emitted by electrons accelerated by the external shock(7-9). Recently, intense long-lasting emission between 0.2 and 1 teraelectronvolts was observed from GRB 190114C(10,11). Here we report multifrequency observations of GRB 190114C, and study the evolution in time of the GRB emission across 17 orders of magnitude in energy, from 5 x 10(-6) to 10(12) electronvolts. We find that the broadband spectral energy distribution is double-peaked, with the teraelectronvolt emission constituting a distinct spectral component with power comparable to the synchrotron component. This component is associated with the afterglow and is satisfactorily explained by inverse Compton up-scattering of synchrotron photons by high-energy electrons. We find that the conditions required to account for the observed teraelectronvolt component are typical for GRBs, supporting the possibility that inverse Compton emission is commonly produced in GRBs.
  •  
2.
  • Aartsen, M. G., et al. (författare)
  • The Detection Of A Sn Iin In Optical Follow-Up Observations Of Icecube Neutrino Events
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 811:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube neutrino observatory pursues a follow-up program selecting interesting neutrino events in real-time and issuing alerts for electromagnetic follow-up observations. In 2012 March, the most significant neutrino alert during the first three years of operation was issued by IceCube. In the follow-up observations performed by the Palomar Transient Factory (PTF), a Type IIn supernova (SN IIn) PTF12csy was found 0.degrees 2 away from the neutrino alert direction, with an error radius of 0.degrees 54. It has a redshift of z = 0.0684, corresponding to a luminosity distance of about 300 Mpc and the Pan-STARRS1 survey shows that its explosion time was at least 158 days (in host galaxy rest frame) before the neutrino alert, so that a causal connection is unlikely. The a posteriori significance of the chance detection of both the neutrinos and the SN at any epoch is 2.2 sigma within IceCube's 2011/12 data acquisition season. Also, a complementary neutrino analysis reveals no long-term signal over the course of one year. Therefore, we consider the SN detection coincidental and the neutrinos uncorrelated to the SN. However, the SN is unusual and interesting by itself: it is luminous and energetic, bearing strong resemblance to the SN IIn 2010jl, and shows signs of interaction of the SN ejecta with a dense circumstellar medium. High-energy neutrino emission is expected in models of diffusive shock acceleration, but at a low, non-detectable level for this specific SN. In this paper, we describe the SN PTF12csy and present both the neutrino and electromagnetic data, as well as their analysis.
  •  
3.
  • Ackley, K., et al. (författare)
  • Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 643
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Gravitational wave (GW) astronomy has rapidly reached maturity, becoming a fundamental observing window for modern astrophysics. The coalescences of a few tens of black hole (BH) binaries have been detected, while the number of events possibly including a neutron star (NS) is still limited to a few. On 2019 August 14, the LIGO and Virgo interferometers detected a high-significance event labelled S190814bv. A preliminary analysis of the GW data suggests that the event was likely due to the merger of a compact binary system formed by a BH and a NS.Aims. In this paper, we present our extensive search campaign aimed at uncovering the potential optical and near infrared electromagnetic counterpart of S190814bv. We found no convincing electromagnetic counterpart in our data. We therefore use our non-detection to place limits on the properties of the putative outflows that could have been produced by the binary during and after the merger.Methods. Thanks to the three-detector observation of S190814bv, and given the characteristics of the signal, the LIGO and Virgo Collaborations delivered a relatively narrow localisation in low latency - a 50% (90%) credible area of 5 deg(2) (23 deg(2)) - despite the relatively large distance of 26752 Mpc. ElectromagNetic counterparts of GRAvitational wave sources at the VEry Large Telescope collaboration members carried out an intensive multi-epoch, multi-instrument observational campaign to identify the possible optical and near infrared counterpart of the event. In addition, the ATLAS, GOTO, GRAWITA-VST, Pan-STARRS, and VINROUGE projects also carried out a search on this event. In this paper, we describe the combined observational campaign of these groups.Results. Our observations allow us to place limits on the presence of any counterpart and discuss the implications for the kilonova (KN), which was possibly generated by this NS-BH merger, and for the strategy of future searches. The typical depth of our wide-field observations, which cover most of the projected sky localisation probability (up to 99.8%, depending on the night and filter considered), is r similar to 22 (resp. K similar to 21) in the optical (resp. near infrared). We reach deeper limits in a subset of our galaxy-targeted observations, which cover a total similar to 50% of the galaxy-mass-weighted localisation probability. Altogether, our observations allow us to exclude a KN with large ejecta mass M greater than or similar to 0.1 M-circle dot to a high (> 90%) confidence, and we can exclude much smaller masses in a sub-sample of our observations. This disfavours the tidal disruption of the neutron star during the merger.Conclusions. Despite the sensitive instruments involved in the campaign, given the distance of S190814bv, we could not reach sufficiently deep limits to constrain a KN comparable in luminosity to AT 2017gfo on a large fraction of the localisation probability. This suggests that future (likely common) events at a few hundred megaparsecs will be detected only by large facilities with both a high sensitivity and large field of view. Galaxy-targeted observations can reach the needed depth over a relevant portion of the localisation probability with a smaller investment of resources, but the number of galaxies to be targeted in order to get a fairly complete coverage is large, even in the case of a localisation as good as that of this event.
  •  
4.
  • Kasliwal, M. M., et al. (författare)
  • Illuminating gravitational waves : A concordant picture of photons from a neutron star merger
  • 2017
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 358:6370, s. 1559-
  • Tidskriftsartikel (refereegranskat)abstract
    • Merging neutron stars offer an excellent laboratory for simultaneously studying strong-field gravity and matter in extreme environments. We establish the physical association of an electromagnetic counterpart (EM170817) with gravitational waves (GW170817) detected from merging neutron stars. By synthesizing a panchromatic data set, we demonstrate that merging neutron stars are a long-sought production site forging heavy elements by r-process nucleosynthesis. The weak gamma rays seen in EM170817 are dissimilar to classical short gamma-ray bursts with ultrarelativistic jets. Instead, we suggest that breakout of a wide-angle, mildly relativistic cocoon engulfing the jet explains the low-luminosity gamma rays, the high-luminosity ultraviolet-optical-infrared, and the delayed radio and x-ray emission. We posit that all neutron star mergers may lead to a wide-angle cocoon breakout, sometimes accompanied by a successful jet and sometimes by a choked jet.
  •  
5.
  • Schulze, S., et al. (författare)
  • GRB 120422A/SN 2012bz : Bridging the gap between low- and high-luminosity gamma-ray bursts
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 566
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. At low redshift, a handful of gamma-ray bursts (GRBs) have been discovered with luminosities that are substantially lower (L-iso less than or similar to 10(48.5) erg s(-1)) than the average of more distant ones (L-iso greater than or similar to 10(49.5) erg s(-1)). It has been suggested that the properties of several low-luminosity (low-L) GRBs are due to shock break-out, as opposed to the emission from ultrarelativistic jets. This has led to much debate about how the populations are connected. Aims. The burst at redshift z = 0.283 from 2012 April 22 is one of the very few examples of intermediate-L GRBs with a gamma-ray luminosity of L-iso similar to 10(49.6-49.9) erg s(-1) that have been detected up to now. With the robust detection of its accompanying supernova SN 2012bz, it has the potential to answer important questions on the origin of low-and high-L GRBs and the GRB-SN connection. Methods. We carried out a spectroscopy campaign using medium-and low-resolution spectrographs with 6-10-m class telescopes, which covered a time span of 37.3 days, and a multi-wavelength imaging campaign, which ranged from radio to X-ray energies over a duration of similar to 270 days. Furthermore, we used a tuneable filter that is centred at H alpha to map star-formation in the host and the surrounding galaxies. We used these data to extract and model the properties of different radiation components and fitted the spectral energy distribution to extract the properties of the host galaxy. Results. Modelling the light curve and spectral energy distribution from the radio to the X-rays revealed that the blast wave expanded with an initial Lorentz factor of Gamma(0) similar to 50, which is a low value in comparison to high-L GRBs, and that the afterglow had an exceptionally low peak luminosity density of less than or similar to 2 x 10(30) erg s(-1) Hz(-1) in the sub-mm. Because of the weak afterglow component, we were able to recover the signature of a shock break-out in an event that was not a genuine low-L GRB for the first time. At 1.4 hr after the burst, the stellar envelope had a blackbody temperature of k(B)T similar to 16 eV and a radius of similar to 7 x 10(13) cm (both in the observer frame). The accompanying SN 2012bz reached a peak luminosity of M-V = -19.7 mag, which is 0.3 mag more luminous than SN 1998bw. The synthesised nickel mass of 0.58 M-circle dot, ejecta mass of 5.87 M-circle dot, and kinetic energy of 4.10x10(52) erg were among the highest for GRB-SNe, which makes it the most luminous spectroscopically confirmed SN to date. Nebular emission lines at the GRB location were visible, which extend from the galaxy nucleus to the explosion site. The host and the explosion site had close-to-solar metallicity. The burst occurred in an isolated star-forming region with an SFR that is 1/10 of that in the galaxy's nucleus. Conclusions. While the prompt gamma-ray emission points to a high-L GRB, the weak afterglow and the low Gamma(0) were very atypical for such a burst. Moreover, the detection of the shock break-out signature is a new quality for high-L GRBs. So far, shock break-outs were exclusively detected for low-L GRBs, while GRB 120422A had an intermediate L-iso of similar to 10(49.6-49.9) erg s(-1). Therefore, we conclude that GRB 120422A was a transition object between low-and high-L GRBs, which supports the failed-jet model that connects low-L GRBs that are driven by shock break-outs and high-L GRBs that are powered by ultra-relativistic jets.
  •  
6.
  • Tanvir, N. R., et al. (författare)
  • A γ-ray burst at a redshift of z~8.2
  • 2009
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 461, s. 1254-1257
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-duration γ-ray bursts (GRBs) are thought to result from the explosions of certain massive stars, and some are bright enough that they should be observable out to redshifts of z>20 using current technology. Hitherto, the highest redshift measured for any object was z = 6.96, for a Lyman-α emitting galaxy. Here we report that GRB090423 lies at a redshift of z~8.2, implying that massive stars were being produced and dying as GRBs ~630Myr after the Big Bang. The burst also pinpoints the location of its host galaxy.
  •  
7.
  • Singer, L. P., et al. (författare)
  • The Needle in the 100 deg2 Haystack : Uncovering Afterglows of Fermi GRBs with the Palomar Transient Factory
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 806:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Fermi Gamma-Ray Space Telescope has greatly expanded the number and energy window of observations of gamma-ray bursts (GRBs). However, the coarse localizations of tens to a hundred square degrees provided by the Fermi Gamma-ray Burst Monitor (GBM) instrument have posed a formidable obstacle to locating the bursts' host galaxies, measuring their redshifts, and tracking their panchromatic afterglows. We have built a target of opportunity mode for the intermediate Palomar Transient Factory (iPTF) in order to perform targeted searches for Fermi afterglows. Here, we present the results of one year of this program: eight afterglow discoveries, two of which (GRBs 130702A and 140606B) were at low redshift (z=0.145 and 0.384 respectively) and had spectroscopically confirmed broad-line type Ic supernovae. We present our broadband follow-up including spectroscopy as well as X-ray, UV, optical, millimeter, and radio observations. We study possible selection effects in the context of the total Fermi and Swift GRB samples. We identify one new outlier on the Amati relation. We find that two bursts are consistent with a mildly relativistic shock breaking out from the progenitor star, rather than the ultra-relativistic internal shock mechanism that powers standard cosmological bursts. Finally, in the context of the Zwicky Transient Facility (ZTF), we discuss how we will continue to expand this effort to find optical counterparts of binary neutron star mergers that may soon be detected by Advanced LIGO and Virgo.
  •  
8.
  • Lamb, G. P., et al. (författare)
  • Short GRB 160821B : A Reverse Shock, a Refreshed Shock, and a Well-sampled Kilonova
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 883:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report our identification of the optical afterglow and host galaxy of the short-duration gamma-ray burst sGRB 160821B. The spectroscopic redshift of the host is z = 0.162, making it one of the lowest redshift short-duration gamma-ray bursts (sGRBs) identified by Swift. Our intensive follow-up campaign using a range of ground-based facilities as well as Hubble Space Telescope, XMM-Newton, and Swift, shows evidence for a late-time excess of optical and near-infrared emission in addition to a complex afterglow. The afterglow light curve at X-ray frequencies reveals a narrow jet, theta(j) similar to 1.9(-0.03)(+0.10) deg, that is refreshed at >1 day post-burst by a slower outflow with significantly more energy than the initial outflow that produced the main GRB. Observations of the 5 GHz radio afterglow shows a reverse shock into a mildly magnetized shell. The optical and near-infrared excess is fainter than AT2017gfo associated with GW170817, and is well explained by a kilonova with dynamic ejecta mass M-dyn = (1.0 +/- 0.6) x 10(-3) M-circle dot and a secular (post-merger) ejecta mass with M-pm = (1.0 +/- 0.6) x 10(-2) M-circle dot, consistent with a binary neutron star merger resulting in a short-lived massive neutron star. This optical and near-infrared data set provides the best-sampled kilonova light curve without a gravitational wave trigger to date.
  •  
9.
  • Tanvir, N. R., et al. (författare)
  • The Emergence of a Lanthanide-rich Kilonova Following the Merger of Two Neutron Stars
  • 2017
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 848:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery and monitoring of the near-infrared counterpart (AT2017gfo) of a binary neutron-star merger event detected as a gravitational wave source by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo (GW170817) and as a short gamma-ray burst by Fermi Gamma-ray Burst Monitor (GBM) and Integral SPI-ACS (GRB 170817A). The evolution of the transient light is consistent with predictions for the behavior of a kilonova/ macronova powered by the radioactive decay of massive neutron-rich nuclides created via r-process nucleosynthesis in the neutron-star ejecta. In particular, evidence for this scenario is found from broad features seen in Hubble Space Telescope infrared spectroscopy, similar to those predicted for lanthanide-dominated ejecta, and the much slower evolution in the near-infrared K-s-band compared to the optical. This indicates that the late-time light is dominated by high-opacity lanthanide-rich ejecta, suggesting nucleosynthesis to the third r-process peak (atomic masses A approximate to 195). This discovery confirms that neutron-star mergers produce kilo-/macronovae and that they are at least a major-if not the dominant-site of rapid neutron capture nucleosynthesis in the universe.
  •  
10.
  • Ahumada, T., et al. (författare)
  • Discovery and confirmation of the shortest gamma-ray burst from a collapsar
  • 2021
  • Ingår i: Nature Astronomy. - : Springer Nature. - 2397-3366. ; 5:9, s. 917-927
  • Tidskriftsartikel (refereegranskat)abstract
    • Gamma-ray bursts (GRBs) are among the brightest and most energetic events in the Universe. The duration and hardness distribution of GRBs has two clusters1, now understood to reflect (at least) two different progenitors2. Short-hard GRBs (SGRBs; T90 < 2 s) arise from compact binary mergers, and long-soft GRBs (LGRBs; T90 > 2 s) have been attributed to the collapse of peculiar massive stars (collapsars)3. The discovery of SN 1998bw/GRB 980425 (ref. 4) marked the first association of an LGRB with a collapsar, and AT 2017gfo (ref. 5)/GRB 170817A/GW170817 (ref. 6) marked the first association of an SGRB with a binary neutron star merger, which also produced a gravitational wave. Here, we present the discovery of ZTF20abwysqy (AT2020scz), a fast-fading optical transient in the Fermi satellite and the Interplanetary Network localization regions of GRB 200826A; X-ray and radio emission further confirm that this is the afterglow. Follow-up imaging (at rest-frame 16.5 days) reveals excess emission above the afterglow that cannot be explained as an underlying kilonova, but which is consistent with being the supernova. Although the GRB duration is short (rest-frame T90 of 0.65 s), our panchromatic follow-up data confirm a collapsar origin. GRB 200826A is the shortest LGRB found with an associated collapsar; it appears to sit on the brink between a successful and a failed collapsar. Our discovery is consistent with the hypothesis that most collapsars fail to produce ultra-relativistic jets.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 89

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy