SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Persson Fredrik) ;pers:(Nangaku Masaomi)"

Sökning: WFRF:(Persson Fredrik) > Nangaku Masaomi

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Franzen, Stephanie, et al. (författare)
  • Differences in susceptibility to develop parameters of diabetic nephropathy in four mouse strains with type 1 diabetes
  • 2014
  • Ingår i: American Journal of Physiology-Renal Physiology. - : American Physiological Society. - 1931-857X .- 1522-1466. ; 306:10, s. F1171-F1178
  • Tidskriftsartikel (refereegranskat)abstract
    • One-third of diabetes mellitus patients develop diabetic nephropathy, and with underlying mechanisms unknown it is imperative that diabetic animal models resemble human disease. The present study investigated the susceptibility to develop diabetic nephropathy in four commonly used and commercially available mouse strains with type 1 diabetes to determine the suitability of each strain. Type 1 diabetes was induced in C57Bl/6, NMRI, BALB/c, and 129Sv mice by alloxan, and conscious glomerular filtration rate, proteinuria, and oxidative stress levels were measured in control and diabetic animals at baseline and after 5 and 10 wk. Histological alterations were analyzed using periodic acid-Schiff staining. Diabetic C57Bl/6 displayed increased glomerular filtration rate, i.e., hyperfiltration, whereas all other parameters remained unchanged. Diabetic NMRI developed the most pronounced hyperfiltration as well as increased oxidative stress and proteinuria but without glomerular damage. Diabetic BALB/c did not develop hyperfiltration but presented with pronounced proteinuria, increased oxidative stress, and glomerular damage. Diabetic 129Sv displayed proteinuria and increased oxidative stress without glomerular hyperfiltration or damage. However, all strains displayed intras-train correlation between oxidative stress and proteinuria. In conclusion, diabetic C57Bl/6 and NMRI both developed glomerular hyperfiltration but neither presented with histological damage, although NMRI developed low-degree proteinuria. Thus these strains may be suitable when investigating the mechanism causing hyperfiltration. Neither BALB/c nor 129Sv developed hyperfiltration although both developed pronounced proteinuria. However, only BALB/c developed detectable histological damage. Thus BALB/c may be suitable when studying the roles of proteinuria and histological alterations for the progression of diabetic nephropathy.
  •  
3.
  •  
4.
  • Friederich-Persson, Malou, et al. (författare)
  • Kidney Hypoxia, Attributable to Increased Oxygen Consumption, Induces Nephropathy Independently of Hyperglycemia and Oxidative Stress
  • 2013
  • Ingår i: Hypertension. - : American Heart Association. - 0194-911X .- 1524-4563. ; 62:5, s. 914-919
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetic nephropathy is strongly associated with both increased oxidative stress and kidney tissue hypoxia. The increased oxidative stress causes increased kidney oxygen consumption resulting in kidney tissue hypoxia. To date, it has been difficult to determine the role of kidney hypoxia, per se, for the development of nephropathy. We tested the hypothesis that kidney hypoxia, without confounding factors such as hyperglycemia or elevated oxidative stress, results in nephropathy. To induce kidney hypoxia, dinitrophenol (30 mg per day per kg bodyweight by gavage), a mitochondrial uncoupler that increases oxygen consumption and causes kidney hypoxia, was administered for 30 consecutive days to rats. Thereafter, glomerular filtration rate, renal blood flow, kidney oxygen consumption, kidney oxygen tension, kidney concentrations of glucose and glycogen, markers of oxidative stress, urinary protein excretion, and histological findings were determined and compared with vehicle-treated controls. Dinitrophenol did not affect arterial blood pressure, renal blood flow, glomerular filtration rate, blood glucose, or markers of oxidative stress but increased kidney oxygen consumption, and reduced cortical and medullary concentrations of glucose and glycogen, and resulted in intrarenal tissue hypoxia. Furthermore, dinitrophenol treatment increased urinary protein excretion, kidney vimentin expression, and infiltration of inflammatory cells. In conclusion, increased mitochondrial oxygen consumption results in kidney hypoxia and subsequent nephropathy. Importantly, these results demonstrate that kidney tissue hypoxia, per se, without confounding hyperglycemia or oxidative stress, may be sufficient to initiate the development of nephropathy and therefore demonstrate a new interventional target for treating kidney disease.
  •  
5.
  • Nordquist, Lina, et al. (författare)
  • Activation of Hypoxia-Inducible Factors Prevents Diabetic Nephropathy
  • 2015
  • Ingår i: Journal of the American Society of Nephrology. - : American Society of Nephrology. - 1046-6673 .- 1533-3450. ; 26:2, s. 328-338
  • Tidskriftsartikel (refereegranskat)abstract
    • Hyperglycemia results in increased oxygen consumption and decreased oxygen tension in the kidney. We tested the hypothesis that activation of hypoxia-inducible factors (HIFs) protects against diabetes-induced alterations in oxygen metabolism and kidney function. Experimental groups consisted of control and streptozotocin-induced diabetic rats treated with or without chronic cobalt chloride to activate HIFs. We elucidated the involvement of oxidative stress by studying the effects of acute administration of the superoxide dismutase mimetic tempol. Compared with controls, diabetic rats displayed tissue hypoxia throughout the kidney, glonnerular hyperfiltration, increased oxygen consumption, increased total mitochondrial leak respiration, and decreased tubular sodium transport efficiency. Diabetic kidneys showed proteinuria and tubulointerstitial damage. Cobalt chloride activated HIFs, prevented the diabetes-induced alterations in oxygen metabolism, mitochondrial leak respiration, and kidney function, and reduced proteinuria and tubulointerstitial damage. The beneficial effects of tempol were less pronounced after activation of HIFs, indicating improved oxidative stress status. In conclusion, activation of HIFs prevents diabetes-induced alteration in kidney oxygen metabolism by normalizing glomerular filtration, which reduces tubular electrolyte load, preventing mitochondrial leak respiration and improving tubular transport efficiency. These improvements could be related to reduced oxidative stress and account for the reduced proteinuria and tubulointerstitial damage. Thus, pharnnacologic activation of the HIF system may prevent development of diabetic nephropathy.
  •  
6.
  • Sivertsson, Ebba, et al. (författare)
  • Thyroid hormone increases oxygen metabolism causing intrarenal tissue hypoxia; a pathway to kidney disease
  • 2022
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 17:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The proposed mechanisms for the development of nephropathy are many, complex and often overlapping. Although recent literature strongly supports a role of kidney hypoxia as an independent pathway to nephropathy, the evidence remains inconclusive since the role of hypoxia is difficult to differentiate from confounding factors such as hyperglycemia, hypertension and oxidative stress. By increasing kidney oxygen consumption using triiodothyronine (T-3) and, thus, avoiding these confounding factors, the aim of the present study was to investigate renal hypoxia per se as a causal pathway for the development of nephropathy. Healthy Sprague-Dawley rats were treated with T-3 (10 mu g/kg/day) and the angiotensin II AT(1)-receptor antagonist candesartan (1 mg/kg in drinking water) to eliminate effects of T-3-induced renin release; and compared to a candesartan treated control group. After 7 weeks of treatment in vivo kidney function, oxygen metabolism and mitochondrial function were evaluated. T-3 did not affect glomerular filtration rate or renal blood flow, but increased total kidney oxygen consumption resulting in cortical hypoxia. Nephropathy, demonstrated as albuminuria and tubulointerstitial fibrosis, developed in T-3-treated animals. Mitochondria uncoupling mediated by uncoupling protein 2 and the adenosine nucleotide transporter was demonstrated as a mechanism causing the increased kidney oxygen consumption. Importantly, blood glucose levels, mean arterial blood pressure and oxidative stress levels were not affected by T-3. In conclusion, the present study provides further evidence for increased kidney oxygen consumption causing intrarenal tissue hypoxia, as a causal pathway for development of nephropathy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy