SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Peters A) ;lar1:(liu)"

Sökning: WFRF:(Peters A) > Linköpings universitet

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
3.
  • ODonnell, Michael, et al. (författare)
  • Registered Replication Report: Dijksterhuis and van Knippenberg (1998)
  • 2018
  • Ingår i: Perspectives on Psychological Science. - : SAGE PUBLICATIONS LTD. - 1745-6916 .- 1745-6924. ; 13:2, s. 268-294
  • Tidskriftsartikel (refereegranskat)abstract
    • Dijksterhuis and van Knippenberg (1998) reported that participants primed with a category associated with intelligence (professor) subsequently performed 13% better on a trivia test than participants primed with a category associated with a lack of intelligence (soccer hooligans). In two unpublished replications of this study designed to verify the appropriate testing procedures, Dijksterhuis, van Knippenberg, and Holland observed a smaller difference between conditions (2%-3%) as well as a gender difference: Men showed the effect (9.3% and 7.6%), but women did not (0.3% and -0.3%). The procedure used in those replications served as the basis for this multilab Registered Replication Report. A total of 40 laboratories collected data for this project, and 23 of these laboratories met all inclusion criteria. Here we report the meta-analytic results for those 23 direct replications (total N = 4,493), which tested whether performance on a 30-item general-knowledge trivia task differed between these two priming conditions (results of supplementary analyses of the data from all 40 labs, N = 6,454, are also reported). We observed no overall difference in trivia performance between participants primed with the professor category and those primed with the hooligan category (0.14%) and no moderation by gender.
  •  
4.
  • Saunois, M., et al. (författare)
  • The global methane budget 2000–2012
  • 2016
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 8:2, s. 697-751
  • Tidskriftsartikel (refereegranskat)abstract
    • The global methane (CH4) budget is becoming an increasingly important component for managing realistic pathways to mitigate climate change. This relevance, due to a shorter atmospheric lifetime and a stronger warming potential than carbon dioxide, is challenged by the still unexplained changes of atmospheric CH4 over the past decade. Emissions and concentrations of CH4 are continuing to increase, making CH4 the second most important human-induced greenhouse gas after carbon dioxide. Two major difficulties in reducing uncertainties come from the large variety of diffusive CH4 sources that overlap geographically, and from the destruction of CH4 by the very short-lived hydroxyl radical (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate research on the methane cycle, and producing regular (∼ biennial) updates of the global methane budget. This consortium includes atmospheric physicists and chemists, biogeochemists of surface and marine emissions, and socio-economists who study anthropogenic emissions. Following Kirschke et al. (2013), we propose here the first version of a living review paper that integrates results of top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models, inventories and data-driven approaches (including process-based models for estimating land surface emissions and atmospheric chemistry, and inventories for anthropogenic emissions, data-driven extrapolations). For the 2003–2012 decade, global methane emissions are estimated by top-down inversions at 558 Tg CH4 yr−1, range 540–568. About 60 % of global emissions are anthropogenic (range 50–65 %). Since 2010, the bottom-up global emission inventories have been closer to methane emissions in the most carbon-intensive Representative Concentrations Pathway (RCP8.5) and higher than all other RCP scenarios. Bottom-up approaches suggest larger global emissions (736 Tg CH4 yr−1, range 596–884) mostly because of larger natural emissions from individual sources such as inland waters, natural wetlands and geological sources. Considering the atmospheric constraints on the top-down budget, it is likely that some of the individual emissions reported by the bottom-up approaches are overestimated, leading to too large global emissions. Latitudinal data from top-down emissions indicate a predominance of tropical emissions (∼ 64 % of the global budget, < 30° N) as compared to mid (∼ 32 %, 30–60° N) and high northern latitudes (∼ 4 %, 60–90° N). Top-down inversions consistently infer lower emissions in China (∼ 58 Tg CH4 yr−1, range 51–72, −14 %) and higher emissions in Africa (86 Tg CH4 yr−1, range 73–108, +19 %) than bottom-up values used as prior estimates. Overall, uncertainties for anthropogenic emissions appear smaller than those from natural sources, and the uncertainties on source categories appear larger for top-down inversions than for bottom-up inventories and models. The most important source of uncertainty on the methane budget is attributable to emissions from wetland and other inland waters. We show that the wetland extent could contribute 30–40 % on the estimated range for wetland emissions. Other priorities for improving the methane budget include the following: (i) the development of process-based models for inland-water emissions, (ii) the intensification of methane observations at local scale (flux measurements) to constrain bottom-up land surface models, and at regional scale (surface networks and satellites) to constrain top-down inversions, (iii) improvements in the estimation of atmospheric loss by OH, and (iv) improvements of the transport models integrated in top-down inversions. The data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (http://doi.org/10.3334/CDIAC/GLOBAL_METHANE_BUDGET_2016_V1.1) and the Global Carbon Project.
  •  
5.
  • Saunois, M., et al. (författare)
  • Variability and quasi-decadal changes in the methane budget over the period 2000–2012
  • 2017
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 17:18, s. 11135-11161
  • Tidskriftsartikel (refereegranskat)abstract
    • Following the recent Global Carbon Project (GCP) synthesis of the decadal methane (CH4) budget over 2000–2012 (Saunois et al., 2016), we analyse here the same dataset with a focus on quasi-decadal and inter-annual variability in CH4 emissions. The GCP dataset integrates results from top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models (including process-based models for estimating land surface emissions and atmospheric chemistry), inventories of anthropogenic emissions, and data-driven approaches. The annual global methane emissions from top-down studies, which by construction match the observed methane growth rate within their uncertainties, all show an increase in total methane emissions over the period 2000–2012, but this increase is not linear over the 13 years. Despite differences between individual studies, the mean emission anomaly of the top-down ensemble shows no significant trend in total methane emissions over the period 2000–2006, during the plateau of atmospheric methane mole fractions, and also over the period 2008–2012, during the renewed atmospheric methane increase. However, the top-down ensemble mean produces an emission shift between 2006 and 2008, leading to 22 [16–32] Tg CH4 yr−1 higher methane emissions over the period 2008–2012 compared to 2002–2006. This emission increase mostly originated from the tropics, with a smaller contribution from mid-latitudes and no significant change from boreal regions. The regional contributions remain uncertain in top-down studies. Tropical South America and South and East Asia seem to contribute the most to the emission increase in the tropics. However, these two regions have only limited atmospheric measurements and remain therefore poorly constrained. The sectorial partitioning of this emission increase between the periods 2002–2006 and 2008–2012 differs from one atmospheric inversion study to another. However, all top-down studies suggest smaller changes in fossil fuel emissions (from oil, gas, and coal industries) compared to the mean of the bottom-up inventories included in this study. This difference is partly driven by a smaller emission change in China from the top-down studies compared to the estimate in the Emission Database for Global Atmospheric Research (EDGARv4.2) inventory, which should be revised to smaller values in a near future. We apply isotopic signatures to the emission changes estimated for individual studies based on five emission sectors and find that for six individual top-down studies (out of eight) the average isotopic signature of the emission changes is not consistent with the observed change in atmospheric 13CH4. However, the partitioning in emission change derived from the ensemble mean is consistent with this isotopic constraint. At the global scale, the top-down ensemble mean suggests that the dominant contribution to the resumed atmospheric CH4 growth after 2006 comes from microbial sources (more from agriculture and waste sectors than from natural wetlands), with an uncertain but smaller contribution from fossil CH4 emissions. In addition, a decrease in biomass burning emissions (in agreement with the biomass burning emission databases) makes the balance of sources consistent with atmospheric 13CH4 observations. In most of the top-down studies included here, OH concentrations are considered constant over the years (seasonal variations but without any inter-annual variability). As a result, the methane loss (in particular through OH oxidation) varies mainly through the change in methane concentrations and not its oxidants. For these reasons, changes in the methane loss could not be properly investigated in this study, although it may play a significant role in the recent atmospheric methane changes as briefly discussed at the end of the paper.
  •  
6.
  • Attia, Zachi I., et al. (författare)
  • Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram
  • 2021
  • Ingår i: Mayo Clinic proceedings. - : ELSEVIER SCIENCE INC. - 0025-6196 .- 1942-5546. ; 96:8, s. 2081-2094
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To rapidly exclude severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using artificial intelligence applied to the electrocardiogram (ECG). Methods: A global, volunteer consortium from 4 continents identified patients with ECGs obtained around the time of polymerase chain reaction-confirmed COVID-19 diagnosis and age- and sex-matched controls from the same sites. Clinical characteristics, polymerase chain reaction results, and raw electrocardiographic data were collected. A convolutional neural network was trained using 26,153 ECGs (33.2% COVID positive), validated with 3826 ECGs (33.3% positive), and tested on 7870 ECGs not included in other sets (32.7% positive). Performance under different prevalence values was tested by adding control ECGs from a single high-volume site. Results: The area under the curve for detection of acute COVID-19 infection in the test group was 0.767 (95% CI, 0.756 to 0.778; sensitivity, 98%; specificity, 10%; positive predictive value, 37%; negative predictive value, 91%). To more accurately reflect a real-world population, 50,905 normal controls were added to adjust the COVID prevalence to approximately 5% (2657/58,555), resulting in an area under the curve of 0.780 (95% CI, 0.771 to 0.790) with a specificity of 12.1% and a negative predictive value of 99.2%. Conclusion: Infection with SARS-CoV-2 results in electrocardiographic changes that permit the artificial intelligence-enhanced ECG to be used as a rapid screening test with a high negative predictive value (99.2%). This may permit the development of electrocardiography-based tools to rapidly screen individuals for pandemic control. (C) 2021 Mayo Foundation Medical Education and Research
  •  
7.
  • Thiel, U, et al. (författare)
  • Allogeneic stem cell transplantation for patients with advanced rhabdomyosarcoma: a retrospective assessment
  • 2013
  • Ingår i: British Journal of Cancer. - : Cancer Research UK. - 0007-0920 .- 1532-1827. ; 109:10, s. 2523-2532
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Allogeneic haematopoietic stem cell transplantation (allo-SCT) may provide donor cytotoxic T cell-/NK cell-mediated disease control in patients with rhabdomyosarcoma (RMS). However, little is known about the prevalence of graft-vs-RMS effects and only a few case experiences have been reported. less thanbrgreater than less thanbrgreater thanMethods: We evaluated allo-SCT outcomes of 30 European Group for Blood and Marrow Transplantation (EBMT)-registered patients with advanced RMS regarding toxicity, progression-free survival (PFS) and overall survival (OS) after allo-SCT. Twenty patients were conditioned with reduced intensity and ten with high-dose chemotherapy. Twenty-three patients were transplanted with HLA-matched and seven with HLA-mismatched grafts. Three patients additionally received donor lymphocyte infusions (DLIs). Median follow-up was 9 months. less thanbrgreater than less thanbrgreater thanResults: Three-year OS was 20% (s. e.+/- 8%) with a median survival time of 12 months. Cumulative risk of progression was 67% (s. e.+/- 10%) and 11% (s. e.+/- 6%) for death of complications. Thirteen patients developed acute graft-vs-host disease (GvHD) and five developed chronic GvHD. Eighteen patients died of disease and four of complications. Eight patients survived in complete remission (CR) (median: 44 months). No patients with residual disease before allo-SCT were converted to CR. less thanbrgreater than less thanbrgreater thanConclusion: The use of allo-SCT in patients with advanced RMS is currently experimental. In a subset of patients, it may constitute a valuable approach for consolidating CR, but this needs to be validated in prospective trials.
  •  
8.
  • Jonkman, Nini H., et al. (författare)
  • Do self-management interventions work in patients with heart failure? An individual patient data meta-analysis
  • 2016
  • Ingår i: Circulation. - : Lippincott Williams & Wilkins. - 0009-7322 .- 1524-4539. ; 133:12, s. 1189-1198
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: -Self-management interventions are widely implemented in care for patients with heart failure (HF). Trials however show inconsistent results and whether specific patient groups respond differently is unknown. This individual patient data meta-analysis assessed the effectiveness of self-management interventions in HF patients and whether subgroups of patients respond differently.METHODS AND RESULTS: -Systematic literature search identified randomized trials of self-management interventions. Data of twenty studies, representing 5624 patients, were included and analyzed using mixed effects models and Cox proportional-hazard models including interaction terms. Self-management interventions reduced risk of time to the combined endpoint HF-related hospitalization or all-cause death (hazard ratio [HR], 0.80; 95% confidence interval [CI], 0.71-0.89), time to HF-related hospitalization (HR, 0.80; 95%CI, 0.69-0.92), and improved 12-month HF-related quality of life (standardized mean difference 0.15; 95%CI, 0.00-0.30). Subgroup analysis revealed a protective effect of self-management on number of HF-related hospital days in patients <65 years (mean number of days 0.70 days vs. 5.35 days; interaction p=0.03). Patients without depression did not show an effect of self-management on survival (HR for all-cause mortality, 0.86; 95%CI, 0.69-1.06), while in patients with moderate/severe depression self-management reduced survival (HR, 1.39; 95%CI, 1.06-1.83, interaction p=0.01).CONCLUSIONS: -This study shows that self-management interventions had a beneficial effect on time to HF-related hospitalization or all-cause death, HF-related hospitalization alone, and elicited a small increase in HF-related quality of life. The findings do not endorse limiting self-management interventions to subgroups of HF patients, but increased mortality in depressed patients warrants caution in applying self-management strategies in these patients.
  •  
9.
  • Jonkman, Nini H., et al. (författare)
  • What Are Effective Program Characteristics of Self-Management Interventions in Patients With Heart Failure? : An Individual Patient Data Meta-analysis
  • 2016
  • Ingår i: Journal of Cardiac Failure. - : Elsevier BV. - 1071-9164 .- 1532-8414. ; 22:11, s. 861-871
  • Tidskriftsartikel (refereegranskat)abstract
    • Background To identify those characteristics of self-management interventions in patients with heart failure (HF) that are effective in influencing health-related quality of life, mortality, and hospitalizations.Methods and Results Randomized trials on self-management interventions conducted between January 1985 and June 2013 were identified and individual patient data were requested for meta-analysis. Generalized mixed effects models and Cox proportional hazard models including frailty terms were used to assess the relation between characteristics of interventions and health-related outcomes. Twenty randomized trials (5624 patients) were included. Longer intervention duration reduced mortality risk (hazard ratio 0.99, 95% confidence interval [CI] 0.97–0.999 per month increase in duration), risk of HF-related hospitalization (hazard ratio 0.98, 95% CI 0.96–0.99), and HF-related hospitalization at 6 months (risk ratio 0.96, 95% CI 0.92–0.995). Although results were not consistent across outcomes, interventions comprising standardized training of interventionists, peer contact, log keeping, or goal-setting skills appeared less effective than interventions without these characteristics.Conclusion No specific program characteristics were consistently associated with better effects of self-management interventions, but longer duration seemed to improve the effect of self-management interventions on several outcomes. Future research using factorial trial designs and process evaluations is needed to understand the working mechanism of specific program characteristics of self-management interventions in HF patients.
  •  
10.
  • Saunois, Marielle, et al. (författare)
  • The Global Methane Budget 2000–2017
  • 2020
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3516 .- 1866-3508. ; 12:3, s. 1561-1623
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations).For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or ∼ 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is 29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009), and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr−1, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (∼ 65 % of the global budget, < 30∘ N) compared to mid-latitudes (∼ 30 %, 30–60∘ N) and high northern latitudes (∼ 4 %, 60–90∘ N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters.Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr−1 lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4 yr−1 by 8 Tg CH4 yr−1, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning.The data presented here can be downloaded from https://doi.org/10.18160/GCP-CH4-2019 (Saunois et al., 2020) and from the Global Carbon Project.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20
Typ av publikation
tidskriftsartikel (18)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (20)
Författare/redaktör
Bastviken, David (4)
Thornton, Brett F. (3)
Ciais, P. (3)
Crill, Patrick (3)
Zhang, Z. (2)
Peng, C (2)
visa fler...
Kim, H. S. (2)
Strömberg, Anna (2)
Jaarsma, Tiny (2)
Weiss, R. (2)
Zhang, B. (2)
Wang, Mei (2)
Kominami, Eiki (2)
Schroeder, R. (2)
Bruhwiler, L. (2)
Dlugokencky, E. J. (2)
Bonaldo, Paolo (2)
Minucci, Saverio (2)
De Milito, Angelo (2)
Kågedal, Katarina (2)
Liu, Wei (2)
Clarke, Robert (2)
Ågren, Susanna (2)
Kumar, Ashok (2)
Mårtensson, Jan (2)
Brest, Patrick (2)
Simon, Hans-Uwe (2)
Mograbi, Baharia (2)
Melino, Gerry (2)
Albert, Matthew L (2)
Riegel, Barbara (2)
Lopez-Otin, Carlos (2)
Janssens-Maenhout, G ... (2)
Liu, Bo (2)
Ghavami, Saeid (2)
Harris, James (2)
Xu, X. (2)
Zhang, Hong (2)
Zorzano, Antonio (2)
Ito, A (2)
Bozhkov, Peter (2)
Petersen, Morten (2)
Peters, C. (2)
Gedney, N. (2)
Beerling, D. J. (2)
Poulter, B. (2)
Viovy, N. (2)
Przyklenk, Karin (2)
Noda, Takeshi (2)
Zhao, Ying (2)
visa färre...
Lärosäte
Lunds universitet (5)
Stockholms universitet (4)
Jönköping University (3)
Karolinska Institutet (2)
Sveriges Lantbruksuniversitet (2)
visa fler...
Göteborgs universitet (1)
Umeå universitet (1)
visa färre...
Språk
Engelska (20)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (11)
Naturvetenskap (5)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy