SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Petersson S) ;pers:(Petersson Per)"

Sökning: WFRF:(Petersson S) > Petersson Per

  • Resultat 1-10 av 115
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
2.
  • Meyer, H., et al. (författare)
  • Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution
  • 2017
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 57:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement H-H(98,H-y2) approximate to 0.95. Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.
  •  
3.
  • Meyer, H., et al. (författare)
  • Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution
  • 2017
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 57:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement H-H(98,H-y2) approximate to 0.95. Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.
  •  
4.
  • Stroth, U., et al. (författare)
  • Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • An overview of recent results obtained at the tokamak ASDEX Upgrade (AUG) is given. A work flow for predictive profile modelling of AUG discharges was established which is able to reproduce experimental H-mode plasma profiles based on engineering parameters only. In the plasma center, theoretical predictions on plasma current redistribution by a dynamo effect were confirmed experimentally. For core transport, the stabilizing effect of fast ion distributions on turbulent transport is shown to be important to explain the core isotope effect and improves the description of hollow low-Z impurity profiles. The L-H power threshold of hydrogen plasmas is not affected by small helium admixtures and it increases continuously from the deuterium to the hydrogen level when the hydrogen concentration is raised from 0 to 100%. One focus of recent campaigns was the search for a fusion relevant integrated plasma scenario without large edge localised modes (ELMs). Results from six different ELM-free confinement regimes are compared with respect to reactor relevance: ELM suppression by magnetic perturbation coils could be attributed to toroidally asymmetric turbulent fluctuations in the vicinity of the separatrix. Stable improved confinement mode plasma phases with a detached inner divertor were obtained using a feedback control of the plasma β. The enhanced D α H-mode regime was extended to higher heating power by feedback controlled radiative cooling with argon. The quasi-coherent exhaust regime was developed into an integrated scenario at high heating power and energy confinement, with a detached divertor and without large ELMs. Small ELMs close to the separatrix lead to peeling-ballooning stability and quasi continuous power exhaust. Helium beam density fluctuation measurements confirm that transport close to the separatrix is important to achieve the different ELM-free regimes. Based on separatrix plasma parameters and interchange-drift-Alfvén turbulence, an analytic model was derived that reproduces the experimentally found important operational boundaries of the density limit and between L- and H-mode confinement. Feedback control for the X-point radiator (XPR) position was established as an important element for divertor detachment control. Stable and detached ELM-free phases with H-mode confinement quality were obtained when the XPR was moved 10 cm above the X-point. Investigations of the plasma in the future flexible snow-flake divertor of AUG by means of first SOLPS-ITER simulations with drifts activated predict beneficial detachment properties and the activation of an additional strike point by the drifts.
  •  
5.
  • Mayer, M., et al. (författare)
  • Ion beam analysis of fusion plasma-facing materials and components : Facilities and research challenges
  • 2020
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing. - 0029-5515 .- 1741-4326. ; 60:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Following the IAEA Technical Meeting on 'Advanced Methodologies for the Analysis of Materials in Energy Applications Using Ion Beam Accelerators', this paper reviews the current status of ion beam analysis (IBA) techniques and some aspects of ion-induced radiation damage in materials for the field of materials relevant to fusion. Available facilities, apparatus development, future research options and challenges are presented and discussed. The analysis of beryllium and radioactivity-containing samples from future experiments in JET or ITER represents not only an analytical but also a technical challenge. A comprehensive list of the facilities, their current status, and analytical capabilities comes alongside detailed descriptions of the labs. A discussion of future issues of sample handling and the current status of facilities at JET complete the technical section. To prepare the international IBA community for these challenges, the IAEA technical meeting concludes the necessity for determining new nuclear reaction cross-sections and improving the inter-laboratory comparability by defining international standards and testing these via a round-robin test. 
  •  
6.
  • Litaudon, X., et al. (författare)
  • 14 MeV calibration of JET neutron detectors-phase 1: Calibration and characterization of the neutron source
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is 10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e.The neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4π sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within ± 5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in-vessel calibration and to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the generator neutrons, and taking into account all the calibration circumstances.
  •  
7.
  • Pegourie, B., et al. (författare)
  • Deuterium inventory in Tore Supra : Coupled carbon-deuterium balance
  • 2013
  • Ingår i: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115 .- 1873-4820. ; 438:Suppl., s. S120-S125
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents an analysis of the carbon-deuterium circulation and the resulting balance in Tore Supra over the period 2002-2007. Carbon balance combines the estimation of carbon gross erosion from spectroscopy, net erosion and deposition using confocal microscopy, lock-in thermography and SEM, and a measure of the amount of deposits collected in the vacuum chamber. Fuel retention is determined from post-mortem (PM) analyses and gas balance (GB) measurements. Special attention was paid to the deuterium outgassed during the nights and weekends of the experimental campaign (vessel under vacuum, Plasma Facing Components at 120 degrees C) and during vents (vessel at atmospheric pressure, PFCs at room temperature). It is shown that this outgassing is the main process reconciling the PM and GB estimations of fuel retention, closing the coupled carbon-deuterium balance. In particular, it explains why the deuterium concentration in deposits decreases with increasing depth.
  •  
8.
  • Batistoni, P., et al. (författare)
  • 14 MeV calibration of JET neutron detectors-phase 2 : in-vessel calibration
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 58:10
  • Tidskriftsartikel (refereegranskat)abstract
    • A new DT campaign (DTE2) is planned at JET in 2020 to minimize the risks of ITER operations. In view of DT operations, a calibration of the JET neutron monitors at 14 MeV neutron energy has been performed using a well calibrated 14 MeV neutron generator (NG) deployed, together with its power supply and control unit, inside the vacuum vessel by the JET remote handling system. The NG was equipped with two calibrated diamond detectors, which continuously monitored its neutron emission rate during the calibration, and activation foils which provided the time integrated yield. Cables embedded in the remote handling boom were used to power the neutron generator, the active detectors and pre-amplifier, and to transport the detectors' signal. The monitoring activation foils were retrieved at the end of each day for decay gamma-ray counting, and replaced by fresh ones. About 76 hours of irradiation, in 9 days, were needed with the neutron generator in 73 different poloidal and toroidal positions in order to calibrate the two neutron yield measuring systems available at JET, the U-235 fission chambers (KN1) and the inner activation system (KN2). The NG neutron emission rates provided by the monitoring detectors were in agreement within 3%. Neutronics calculations have been performed using MCNP code and a detailed model of JET to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the NG neutrons, and taking into account the anisotropy of the neutron generator and all the calibration circumstances. These calculations have made use of a very detailed and validated geometrical description of the neutron generator and of the modified. MNCP neutron source subroutine producing neutron energy-angle distribution for the neutrons emitted by the NG. The KN1 calibration factor for a DT plasma has been determined with +/- 4.2%' experimental uncertainty. Corrections due to NG and remote handling effects and the plasma volume effect have been calculated by simulation modelling. The related additional uncertainties are difficult to estimate, however the results of the previous calibration in 2013 have demonstrated that such uncertainties due to modelling are globally <= +/- 3%. It has been found that the difference between KN1 response to DD neutrons and that to DT neutrons is within the uncertainties in the derived responses. KN2 has been calibrated using the Nb-93(n,2n)Nb-92m and Al-27(n,a)Na-24 activation reactions (energy thresholds 10 MeV and 5 MeV respectively). The total uncertainty on the calibration factors is +/- 6% for Nb-93(n,2n)Nb-92m and +/- 8% Al-27(n,a)Na-24 (1 sigma). The calibration factors of the two independent systems KN1 and KN2 will be validated during DT operations. The experience gained and the lessons learnt are presented and discussed in particular with regard to the 14 MeV neutron calibrations in ITER.
  •  
9.
  • Batistoni, P., et al. (författare)
  • Technological exploitation of Deuterium-Tritium operations at JET in support of ITER design, operation and safety
  • 2016
  • Ingår i: Fusion engineering and design. - : ELSEVIER SCIENCE SA. - 0920-3796 .- 1873-7196. ; 109, s. 278-285
  • Tidskriftsartikel (refereegranskat)abstract
    • Within the framework of the EUROfusion programme, a work-package of technology projects (WPJET3) is being carried out in conjunction with the planned Deuterium-Tritium experiment on JET (DTE2) with the objective of maximising the scientific and technological return of DT operations at JET in support of ITER. This paper presents the progress since the start of the project in 2014 in the preparatory experiments, analyses and studies in the areas of neutronics, neutron induced activation and damage in ITER materials, nuclear safety, tritium retention, permeation and outgassing, and waste production in preparation of DTE2.
  •  
10.
  • Coenen, J. W., et al. (författare)
  • Transient induced tungsten melting at the Joint European Torus (JET)
  • 2017
  • Ingår i: Physica Scripta. - : IOP PUBLISHING LTD. - 0031-8949 .- 1402-4896. ; T170
  • Tidskriftsartikel (refereegranskat)abstract
    • Melting is one of the major risks associated with tungsten (W) plasma-facing components (PFCs) in tokamaks like JET or ITER. These components are designed such that leading edges and hence excessive plasma heat loads deposited at near normal incidence are avoided. Due to the high stored energies in ITER discharges, shallow surface melting can occur under insufficiently mitigated plasma disruption and so-called edge localised modes-power load transients. A dedicated program was carried out at the JET to study the physics and consequences of W transient melting. Following initial exposures in 2013 (ILW-1) of a W-lamella with leading edge, new experiments have been performed on a sloped surface (15 degrees slope) during the 2015/2016 (ILW-3) campaign. This new experiment allows significantly improved infrared thermography measurements and thus resolved important issue of power loading in the context of the previous leading edge exposures. The new lamella was monitored by local diagnostics: spectroscopy, thermography and high-resolution photography in between discharges. No impact on the main plasma was observed despite a strong increase of the local W source consistent with evaporation. In contrast to the earlier exposure, no droplet emission was observed from the sloped surface. Topological modifications resulting from the melting are clearly visible between discharges on the photographic images. Melt damage can be clearly linked to the infrared measurements: the emissivity drops in zones where melting occurs. In comparison with the previous leading edge experiment, no runaway melt motion is observed, consistent with the hypothesis that the escape of thermionic electrons emitted from the melt zone is largely suppressed in this geometry, where the magnetic field intersects the surface at lower angles than in the case of perpendicular impact on a leading edge. Utilising both exposures allows us to further test the model of the forces driving melt motion that successfully reproduced the findings from the original leading edge exposure. Since the ILW-1 experiments, the exposed misaligned lamella has now been retrieved from the JET machine and post mortem analysis has been performed. No obvious mass loss is observed. Profilometry of the ILW-1 lamella shows the structure of the melt damage which is in line with the modell predictions thus allowing further model validation. Nuclear reaction analysis shows a tenfold reduction in surface deuterium concentration in the molten surface in comparison to the non-molten part of the lamella.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 115
Typ av publikation
tidskriftsartikel (105)
konferensbidrag (7)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (114)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Rubel, Marek (81)
Zychor, I (54)
Bykov, Igor (48)
Weckmann, Armin (48)
Ström, Petter (47)
visa fler...
Conroy, Sean (45)
Bergsåker, Henric (44)
Frassinetti, Lorenzo (44)
Hellsten, Torbjörn (44)
Eriksson, Jacob, Dr, ... (42)
Menmuir, Sheena (41)
Cecconello, Marco (39)
Rachlew, Elisabeth, ... (39)
Hellesen, Carl, 1980 ... (39)
Hjalmarsson, Anders (39)
Binda, Federico, 198 ... (38)
Ericsson, Göran (38)
Possnert, Göran, 195 ... (38)
Brezinsek, S (37)
Andersson Sundén, Er ... (37)
Sjöstrand, Henrik, 1 ... (37)
Weiszflog, Matthias (37)
Skiba, Mateusz, 1985 ... (36)
Garcia-Carrasco, Alv ... (35)
Johnson, Thomas (33)
Tholerus, Emmi (32)
Dzysiuk, Nataliia (32)
Likonen, J (25)
Ratynskaia, Svetlana (25)
Stefanikova, Estera (25)
Tolias, Panagiotis (25)
Ivanova, Darya (23)
Widdowson, A. (22)
Olivares, Pablo Vall ... (22)
Wauters, T (20)
Zhou, Yushun (19)
Elevant, Thomas (17)
Koivuranta, S (17)
Garcia Carrasco, Alv ... (16)
Crombe, K (15)
Kreter, A (15)
Asp, E (14)
Heinola, K (14)
Coad, J. P. (14)
Möller, S (14)
Mayer, M. (13)
Hakola, A (13)
Alves, E (13)
Zoletnik, S (12)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (113)
Uppsala universitet (74)
Chalmers tekniska högskola (4)
Göteborgs universitet (1)
Lunds universitet (1)
Karolinska Institutet (1)
Språk
Engelska (115)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (110)
Teknik (9)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy