SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Petit Anna) "

Search: WFRF:(Petit Anna)

  • Result 1-10 of 22
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Maxwell, Christopher A., et al. (author)
  • Interplay between BRCA1 and RHAMM Regulates Epithelial Apicobasal Polarization and May Influence Risk of Breast Cancer
  • 2011
  • In: PLoS Biology. - : Public Library of Science (PLoS). - 1545-7885 .- 1544-9173. ; 9:11
  • Journal article (peer-reviewed)abstract
    • Differentiated mammary epithelium shows apicobasal polarity, and loss of tissue organization is an early hallmark of breast carcinogenesis. In BRCA1 mutation carriers, accumulation of stem and progenitor cells in normal breast tissue and increased risk of developing tumors of basal-like type suggest that BRCA1 regulates stem/progenitor cell proliferation and differentiation. However, the function of BRCA1 in this process and its link to carcinogenesis remain unknown. Here we depict a molecular mechanism involving BRCA1 and RHAMM that regulates apicobasal polarity and, when perturbed, may increase risk of breast cancer. Starting from complementary genetic analyses across families and populations, we identified common genetic variation at the low-penetrance susceptibility HMMR locus (encoding for RHAMM) that modifies breast cancer risk among BRCA1, but probably not BRCA2, mutation carriers: n = 7,584, weighted hazard ratio ((w)HR) = 1.09 (95% CI 1.02-1.16), p(trend) = 0.017; and n = 3,965, (w)HR = 1.04 (95% CI 0.94-1.16), p(trend) = 0.43; respectively. Subsequently, studies of MCF10A apicobasal polarization revealed a central role for BRCA1 and RHAMM, together with AURKA and TPX2, in essential reorganization of microtubules. Mechanistically, reorganization is facilitated by BRCA1 and impaired by AURKA, which is regulated by negative feedback involving RHAMM and TPX2. Taken together, our data provide fundamental insight into apicobasal polarization through BRCA1 function, which may explain the expanded cell subsets and characteristic tumor type accompanying BRCA1 mutation, while also linking this process to sporadic breast cancer through perturbation of HMMR/RHAMM.
  •  
2.
  • Nilton, Anna, et al. (author)
  • Zinc Finger Protein 148 Is Dispensable for Primitive and Definitive Hematopoiesis in Mice
  • 2013
  • In: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 8:7
  • Journal article (peer-reviewed)abstract
    • Hematopoiesis is regulated by transcription factors that induce cell fate and differentiation in hematopoietic stem cells into fully differentiated hematopoietic cell types. The transcription factor zinc finger protein 148 (Zfp148) interacts with the hematopoietic transcription factor Gata1 and has been implicated to play an important role in primitive and definitive hematopoiesis in zebra fish and mouse chimeras. We have recently created a gene-trap knockout mouse model deficient for Zfp148, opening up for analyses of hematopoiesis in a conventional loss-of-function model in vivo. Here, we show that Zfp148-deficient neonatal and adult mice have normal or slightly increased levels of hemoglobin, hematocrit, platelets and white blood cells, compared to wild type controls. Hematopoietic lineages in bone marrow, thymus and spleen from Zfp148(gt/gt) mice were further investigated by flow cytometry. There were no differences in T-cells (CD4 and CD8 single positive cells, CD4 and CD8 double negative/positive cells) in either organ. However, the fraction of CD69- and B220-positive cells among lymphocytes in spleen was slightly lower at postnatal day 14 in Zfp148(gt/gt) mice compared to wild type mice. Our results demonstrate that Zfp148-deficient mice generate normal mature hematopoietic populations thus challenging earlier studies indicating that Zfp148 plays a critical role during hematopoietic development.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view