SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Petzold Max 1973) ;srt2:(2015-2019);pers:(Murray C. J. L.)"

Sökning: WFRF:(Petzold Max 1973) > (2015-2019) > Murray C. J. L.

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barber, R. M., et al. (författare)
  • Healthcare Access and Quality Index based on mortality from causes amenable to personal health care in 195 countries and territories, 1990-2015: a novel analysis from the Global Burden of Disease Study 2015
  • 2017
  • Ingår i: Lancet. - : Elsevier BV. - 0140-6736. ; 390:10091, s. 231-266
  • Tidskriftsartikel (refereegranskat)abstract
    • Background National levels of personal health-care access and quality can be approximated by measuring mortality rates from causes that should not be fatal in the presence of effective medical care (ie, amenable mortality). Previous analyses of mortality amenable to health care only focused on high-income countries and faced several methodological challenges. In the present analysis, we use the highly standardised cause of death and risk factor estimates generated through the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) to improve and expand the quantification of personal health-care access and quality for 195 countries and territories from 1990 to 2015. Methods We mapped the most widely used list of causes amenable to personal health care developed by Nolte and McKee to 32 GBD causes. We accounted for variations in cause of death certification and misclassifications through the extensive data standardisation processes and redistribution algorithms developed for GBD. To isolate the effects of personal health-care access and quality, we risk-standardised cause-specific mortality rates for each geography-year by removing the joint effects of local environmental and behavioural risks, and adding back the global levels of risk exposure as estimated for GBD 2015. We employed principal component analysis to create a single, interpretable summary measure-the Healthcare Quality and Access (HAQ) Index-on a scale of 0 to 100. The HAQ Index showed strong convergence validity as compared with other health-system indicators, including health expenditure per capita (r= 0.88), an index of 11 universal health coverage interventions (r= 0.83), and human resources for health per 1000 (r= 0.77). We used free disposal hull analysis with bootstrapping to produce a frontier based on the relationship between the HAQ Index and the Socio-demographic Index (SDI), a measure of overall development consisting of income per capita, average years of education, and total fertility rates. This frontier allowed us to better quantify the maximum levels of personal health-care access and quality achieved across the development spectrum, and pinpoint geographies where gaps between observed and potential levels have narrowed or widened over time. Findings Between 1990 and 2015, nearly all countries and territories saw their HAQ Index values improve; nonetheless, the difference between the highest and lowest observed HAQ Index was larger in 2015 than in 1990, ranging from 28.6 to 94.6. Of 195 geographies, 167 had statistically significant increases in HAQ Index levels since 1990, with South Korea, Turkey, Peru, China, and the Maldives recording among the largest gains by 2015. Performance on the HAQ Index and individual causes showed distinct patterns by region and level of development, yet substantial heterogeneities emerged for several causes, including cancers in highest-SDI countries; chronic kidney disease, diabetes, diarrhoeal diseases, and lower respiratory infections among middle-SDI countries; and measles and tetanus among lowest-SDI countries. While the global HAQ Index average rose from 40.7 (95% uncertainty interval, 39.0-42.8) in 1990 to 53.7 (52.2-55.4) in 2015, far less progress occurred in narrowing the gap between observed HAQ Index values and maximum levels achieved; at the global level, the difference between the observed and frontier HAQ Index only decreased from 21.2 in 1990 to 20.1 in 2015. If every country and territory had achieved the highest observed HAQ Index by their corresponding level of SDI, the global average would have been 73.8 in 2015. Several countries, particularly in eastern and western sub-Saharan Africa, reached HAQ Index values similar to or beyond their development levels, whereas others, namely in southern sub-Saharan Africa, the Middle East, and south Asia, lagged behind what geographies of similar development attained between 1990 and 2015. Interpretation This novel extension of the GBD Study shows the untapped potential for personal health-care access and quality improvement across the development spectrum. Amid substantive advances in personal health care at the national level, heterogeneous patterns for individual causes in given countries or territories suggest that few places have consistently achieved optimal health-care access and quality across health-system functions and therapeutic areas. This is especially evident in middle-SDI countries, many of which have recently undergone or are currently experiencing epidemiological transitions. The HAQ Index, if paired with other measures of health-systemcharacteristics such as intervention coverage, could provide a robust avenue for tracking progress on universal health coverage and identifying local priorities for strengthening personal health-care quality and access throughout the world. Copyright (C) The Author(s). Published by Elsevier Ltd.
  •  
2.
  • Fullman, N., et al. (författare)
  • Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: a systematic analysis from the Global Burden of Disease Study 2016
  • 2018
  • Ingår i: Lancet. - : Elsevier BV. - 0140-6736. ; 391:10136, s. 2236-2271
  • Tidskriftsartikel (refereegranskat)abstract
    • Background A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016. Methods Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0-100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0-100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita. Findings In 2016, HAQ Index performance spanned from a high of 97.1 (95% UI 95.8-98.1) in Iceland, followed by 96.6 (94.9-97.9) in Norway and 96.1 (94.5-97.3) in the Netherlands, to values as low as 18.6 (13.1-24.4) in the Central African Republic, 19.0 (14.3-23.7) in Somalia, and 23.4 (20.2-26.8) in Guinea-Bissau. The pace of progress achieved between 1990 and 2016 varied, with markedly faster improvements occurring between 2000 and 2016 for many countries in sub-Saharan Africa and southeast Asia, whereas several countries in Latin America and elsewhere saw progress stagnate after experiencing considerable advances in the HAQ Index between 1990 and 2000. Striking subnational disparities emerged in personal health-care access and quality, with China and India having particularly large gaps between locations with the highest and lowest scores in 2016. In China, performance ranged from 91.5 (89.1-936) in Beijing to 48.0 (43.4-53.2) in Tibet (a 43.5-point difference), while India saw a 30.8-point disparity, from 64.8 (59.6-68.8) in Goa to 34.0 (30.3-38.1) in Assam. Japan recorded the smallest range in subnational HAQ performance in 2016 (a 4.8-point difference), whereas differences between subnational locations with the highest and lowest HAQ Index values were more than two times as high for the USA and three times as high for England. State-level gaps in the HAQ Index in Mexico somewhat narrowed from 1990 to 2016 (from a 20.9-point to 17.0-point difference), whereas in Brazil, disparities slightly increased across states during this time (a 17.2-point to 20.4-point difference). Performance on the HAQ Index showed strong linkages to overall development, with high and high-middle SDI countries generally having higher scores and faster gains for non-communicable diseases. Nonetheless, countries across the development spectrum saw substantial gains in some key health service areas from 2000 to 2016, most notably vaccine-preventable diseases. Overall, national performance on the HAQ Index was positively associated with higher levels of total health spending per capita, as well as health systems inputs, but these relationships were quite heterogeneous, particularly among low-to-middle SDI countries. Interpretation GBD 2016 provides a more detailed understanding of past success and current challenges in improving personal health-care access and quality worldwide. Despite substantial gains since 2000, many low-SDI and middle-SDI countries face considerable challenges unless heightened policy action and investments focus on advancing access to and quality of health care across key health services, especially non-communicable diseases. Stagnating or minimal improvements experienced by several low-middle to high-middle SDI countries could reflect the complexities of re-orienting both primary and secondary health-care services beyond the more limited foci of the Millennium Development Goals. Alongside initiatives to strengthen public health programmes, the pursuit of universal health coverage upon improving both access and quality worldwide, and thus requires adopting a more comprehensive view and subsequent provision of quality health care for all populations. Copyright (C) 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.
  •  
3.
  • Fullman, N., et al. (författare)
  • Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: an analysis from the Global Burden of Disease Study 2016
  • 2017
  • Ingår i: Lancet. - 0140-6736 .- 1474-547X. ; 390:10100, s. 1423-1459
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The UN's Sustainable Development Goals (SDGs) are grounded in the global ambition of "leaving no one behind". Understanding today's gains and gaps for the health-related SDGs is essential for decision makers as they aim to improve the health of populations. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016), we measured 37 of the 50 health-related SDG indicators over the period 1990-2016 for 188 countries, and then on the basis of these past trends, we projected indicators to 2030. Methods We used standardised GBD 2016 methods to measure 37 health-related indicators from 1990 to 2016, an increase of four indicators since GBD 2015. We substantially revised the universal health coverage (UHC) measure, which focuses on coverage of essential health services, to also represent personal health-care access and quality for several non-communicable diseases. We transformed each indicator on a scale of 0-100, with 0 as the 2.5th percentile estimated between 1990 and 2030, and 100 as the 97.5th percentile during that time. An index representing all 37 health-related SDG indicators was constructed by taking the geometric mean of scaled indicators by target. On the basis of past trends, we produced projections of indicator values, using a weighted average of the indicator and country-specific annualised rates of change from 1990 to 2016 with weights for each annual rate of change based on out-of-sample validity. 24 of the currently measured health-related SDG indicators have defined SDG targets, against which we assessed attainment. Findings Globally, the median health-related SDG index was 56.7 (IQR 31.9-66.8) in 2016 and country-level performance markedly varied, with Singapore (86.8, 95% uncertainty interval 84.6-88.9), Iceland (86.0, 84.1-87.6), and Sweden (85.6, 81.8-87.8) having the highest levels in 2016 and Afghanistan (10.9, 9.6-11.9), the Central African Republic (11.0, 8.8-13.8), and Somalia (11.3, 9.5-13.1) recording the lowest. Between 2000 and 2016, notable improvements in the UHC index were achieved by several countries, including Cambodia, Rwanda, Equatorial Guinea, Laos, Turkey, and China; however, a number of countries, such as Lesotho and the Central African Republic, but also high-income countries, such as the USA, showed minimal gains. Based on projections of past trends, the median number of SDG targets attained in 2030 was five (IQR 2-8) of the 24 defined targets currently measured. Globally, projected target attainment considerably varied by SDG indicator, ranging from more than 60% of countries projected to reach targets for under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria, to less than 5% of countries projected to achieve targets linked to 11 indicator targets, including those for childhood overweight, tuberculosis, and road injury mortality. For several of the health-related SDGs, meeting defined targets hinges upon substantially faster progress than what most countries have achieved in the past. Interpretation GBD 2016 provides an updated and expanded evidence base on where the world currently stands in terms of the health-related SDGs. Our improved measure of UHC offers a basis to monitor the expansion of health services necessary to meet the SDGs. Based on past rates of progress, many places are facing challenges in meeting defined health-related SDG targets, particularly among countries that are the worst off. In view of the early stages of SDG implementation, however, opportunity remains to take actions to accelerate progress, as shown by the catalytic effects of adopting the Millennium Development Goals after 2000. With the SDGs' broader, bolder development agenda, multisectoral commitments and investments are vital to make the health-related SDGs within reach of all populations. Copyright The Authors. Published by Elsevier Ltd. This is an Open Access article published under the CC BY 4.0 license.
  •  
4.
  • Gakidou, E., et al. (författare)
  • Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016
  • 2017
  • Ingår i: Lancet. - : Elsevier. - 0140-6736 .- 1474-547X. ; 390:10100, s. 1345-1422
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of risk factor exposure and attributable burden of disease. By providing estimates over a long time series, this study can monitor risk exposure trends critical to health surveillance and inform policy debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2016. This study included 481 risk-outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk (RR) and exposure estimates from 22 717 randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources, according to the GBD 2016 source counting methods. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. Finally, we explored four drivers of trends in attributable burden: population growth, population ageing, trends in risk exposure, and all other factors combined. Findings Since 1990, exposure increased significantly for 30 risks, did not change significantly for four risks, and decreased significantly for 31 risks. Among risks that are leading causes of burden of disease, child growth failure and household air pollution showed the most significant declines, while metabolic risks, such as body-mass index and high fasting plasma glucose, showed significant increases. In 2016, at Level 3 of the hierarchy, the three leading risk factors in terms of attributable DALYs at the global level for men were smoking (124.1 million DALYs [95% UI 111.2 million to 137.0 million]), high systolic blood pressure (122.2 million DALYs [110.3 million to 133.3 million], and low birthweight and short gestation (83.0 million DALYs [78.3 million to 87.7 million]), and for women, were high systolic blood pressure (89.9 million DALYs [80.9 million to 98.2 million]), high body-mass index (64.8 million DALYs [44.4 million to 87.6 million]), and high fasting plasma glucose (63.8 million DALYs [53.2 million to 76.3 million]). In 2016 in 113 countries, the leading risk factor in terms of attributable DALYs was a metabolic risk factor. Smoking remained among the leading five risk factors for DALYs for 109 countries, while low birthweight and short gestation was the leading risk factor for DALYs in 38 countries, particularly in sub-Saharan Africa and South Asia. In terms of important drivers of change in trends of burden attributable to risk factors, between 2006 and 2016 exposure to risks explains an 9.3% (6.9-11.6) decline in deaths and a 10.8% (8.3-13.1) decrease in DALYs at the global level, while population ageing accounts for 14.9% (12.7-17.5) of deaths and 6.2% (3.9-8.7) of DALYs, and population growth for 12.4% (10.1-14.9) of deaths and 12.4% (10.1-14.9) of DALYs. The largest contribution of trends in risk exposure to disease burden is seen between ages 1 year and 4 years, where a decline of 27.3% (24.9-29.7) of the change in DALYs between 2006 and 2016 can be attributed to declines in exposure to risks. Interpretation Increasingly detailed understanding of the trends in risk exposure and the RRs for each risk-outcome pair provide insights into both the magnitude of health loss attributable to risks and how modification of risk exposure has contributed to health trends. Metabolic risks warrant particular policy attention, due to their large contribution to global disease burden, increasing trends, and variable patterns across countries at the same level of development. GBD 2016 findings show that, while it has huge potential to improve health, risk modification has played a relatively small part in the past decade. Copyright (C) The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.
  •  
5.
  • Hay, S. I., et al. (författare)
  • Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2016 : A systematic analysis for the Global Burden of Disease Study 2016
  • 2017
  • Ingår i: The Lancet. - : Lancet Publishing Group. - 0140-6736 .- 1474-547X. ; 390:10100, s. 1260-1344
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Measurement of changes in health across locations is useful to compare and contrast changing epidemiological patterns against health system performance and identify specific needs for resource allocation in research, policy development, and programme decision making. Using the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we drew from two widely used summary measures to monitor such changes in population health: disability-adjusted life-years (DALYs) and healthy life expectancy (HALE). We used these measures to track trends and benchmark progress compared with expected trends on the basis of the Socio-demographic Index (SDI). Methods: We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2016. We calculated DALYs by summing years of life lost and years of life lived with disability for each location, age group, sex, and year. We estimated HALE using age-specific death rates and years of life lived with disability per capita. We explored how DALYs and HALE difered from expected trends when compared with the SDI: the geometric mean of income per person, educational attainment in the population older than age 15 years, and total fertility rate. Findings: The highest globally observed HALE at birth for both women and men was in Singapore, at 75·2 years (95% uncertainty interval 71·9-78·6) for females and 72·0 years (68·8-75·1) for males. The lowest for females was in the Central African Republic (45·6 years [42·0-49·5]) and for males was in Lesotho (41·5 years [39·0-44·0]). From 1990 to 2016, global HALE increased by an average of 6·24 years (5·97-6·48) for both sexes combined. Global HALE increased by 6·04 years (5·74-6·27) for males and 6·49 years (6·08-6·77) for females, whereas HALE at age 65 years increased by 1·78 years (1·61-1·93) for males and 1·96 years (1·69-2·13) for females. Total global DALYs remained largely unchanged from 1990 to 2016 (-2·3% [-5·9 to 0·9]), with decreases in communicable, maternal, neonatal, and nutritional (CMNN) disease DALYs ofset by increased DALYs due to non-communicable diseases (NCDs). The exemplars, calculated as the fve lowest ratios of observed to expected age-standardised DALY rates in 2016, were Nicaragua, Costa Rica, the Maldives, Peru, and Israel. The leading three causes of DALYs globally were ischaemic heart disease, cerebrovascular disease, and lower respiratory infections, comprising 16·1% of all DALYs. Total DALYs and age-standardised DALY rates due to most CMNN causes decreased from 1990 to 2016. Conversely, the total DALY burden rose for most NCDs; however, age-standardised DALY rates due to NCDs declined globally. Interpretation: At a global level, DALYs and HALE continue to show improvements. At the same time, we observe that many populations are facing growing functional health loss. Rising SDI was associated with increases in cumulative years of life lived with disability and decreases in CMNN DALYs ofset by increased NCD DALYs. Relative compression of morbidity highlights the importance of continued health interventions, which has changed in most locations in pace with the gross domestic product per person, education, and family planning. The analysis of DALYs and HALE and their relationship to SDI represents a robust framework with which to benchmark location-specific health performance. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform health policies, health system improvement initiatives, targeted prevention eforts, and development assistance for health, including fnancial and research investments for all countries, regardless of their level of sociodemographic development. The presence of countries that substantially outperform others suggests the need for increased scrutiny for proven examples of best practices, which can help to extend gains, whereas the presence of underperforming countries suggests the need for devotion of extra attention to health systems that need more robust support. © The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.
  •  
6.
  • Kassebaum, N., et al. (författare)
  • Child and Adolescent Health From 1990 to 2015 Findings From the Global Burden of Diseases, Injuries, and Risk Factors 2015 Study
  • 2017
  • Ingår i: Jama Pediatrics. - : American Medical Association (AMA). - 2168-6203 .- 2168-6211. ; 171:6, s. 573-592
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE Comprehensive and timely monitoring of disease burden in all age groups, including children and adolescents, is essential for improving population health. OBJECTIVE To quantify and describe levels and trends of mortality and nonfatal health outcomes among children and adolescents from 1990 to 2015 to provide a framework for policy discussion. EVIDENCE REVIEW Cause-specific mortality and nonfatal health outcomes were analyzed for 195 countries and territories by age group, sex, and year from 1990 to 2015 using standardized approaches for data processing and statistical modeling, with subsequent analysis of the findings to describe levels and trends across geography and time among children and adolescents 19 years or younger. A composite indicator of income, education, and fertility was developed (Socio-demographic Index [SDI]) for each geographic unit and year, which evaluates the historical association between SDI and health loss. FINDINGS Global child and adolescent mortality decreased from 14.18 million (95% uncertainty interval [UI], 14.09 million to 14.28 million) deaths in 1990 to 7.26 million (95% UI, 7.14 million to 7.39 million) deaths in 2015, but progress has been unevenly distributed. Countries with a lower SDI had a larger proportion of mortality burden (75%) in 2015 than was the case in 1990 (61%). Most deaths in 2015 occurred in South Asia and sub-Saharan Africa. Global trends were driven by reductions in mortality owing to infectious, nutritional, and neonatal disorders, which in the aggregate led to a relative increase in the importance of noncommunicable diseases and injuries in explaining global disease burden. The absolute burden of disability in children and adolescents increased 4.3%(95% UI, 3.1%-5.6%) from 1990 to 2015, with much of the increase owing to population growth and improved survival for children and adolescents to older ages. Other than infectious conditions, many top causes of disability are associated with long-term sequelae of conditions present at birth (eg, neonatal disorders, congenital birth defects, and hemoglobinopathies) and complications of a variety of infections and nutritional deficiencies. Anemia, developmental intellectual disability, hearing loss, epilepsy, and vision loss are important contributors to childhood disability that can arise from multiple causes. Maternal and reproductive health remains a key cause of disease burden in adolescent females, especially in lower-SDI countries. In low-SDI countries, mortality is the primary driver of health loss for children and adolescents, whereas disability predominates in higher-SDI locations; the specific pattern of epidemiological transition varies across diseases and injuries. CONCLUSIONS AND RELEVANCE Consistent international attention and investment have led to sustained improvements in causes of health loss among children and adolescents in many countries, although progress has been uneven. The persistence of infectious diseases in some countries, coupled with ongoing epidemiologic transition to injuries and noncommunicable diseases, require all countries to carefully evaluate and implement appropriate strategies to maximize the health of their children and adolescents and for the international community to carefully consider which elements of child and adolescent health should be monitored.
  •  
7.
  • Kyu, H. H., et al. (författare)
  • Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: Lancet. - : Elsevier BV. - 0140-6736.
  • Konferensbidrag (refereegranskat)abstract
    • Background How long one lives, how many years of life are spent in good and poor health, and how the population's state of health and leading causes of disability change over time all have implications for policy, planning, and provision of services. We comparatively assessed the patterns and trends of healthy life expectancy (HALE), which quantifies the number of years of life expected to be lived in good health, and the complementary measure of disability-adjusted life years (DALYs), a composite measure of disease burden capturing both premature mortality and prevalence and severity of ill health, for 359 diseases and injuries for 195 countries and territories over the past 28 years. Methods We used data for age-specific mortality rates, years of life lost (YLLs) due to premature mortality, and years lived with disability (YLDs) from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 to calculate HALE and DALYs from 1990 to 2017. We calculated HALE using age-specific mortality rates and YLDs per capita for each location, age, sex, and year. We calculated DALYs for 359 causes as the sum of YLLs and YLDs. We assessed how observed HALE and DALYs differed by country and sex from expected trends based on Sociodemographic Index (SDI). We also analysed HALE by decomposing years of life gained into years spent in good health and in poor health, between 1990 and 2017, and extra years lived by females compared with males. Findings Globally, from 1990 to 2017, life expectancy at birth increased by 7.4 years (95% uncertainty interval 74-7.8), from 65.6 years (65.3-65- 8) in 1990 to 73.0 years (72.7-73.3) in 2017. The increase in years of life varied from 5.1 years (5.0-5.3) in high SDI countries to 12.0 years (11.3-12.8) in low SDI countries. Of the additional years of life expected at birth, 26.3% (20.1-33.1) were expected to be spent in poor health in high SDI countries compared with 11.7% (8.8-15.1) in low-middle SDI countries. HALE at birth increased by 6.3 years (5.9-6.7), from 57.0 years (54.6-59.1) in 1990 to 63.3 years (60.5-65.7) in 2017. The increase varied from 3.8 years (3.4-4.1) in high SDI countries to 10.5 years (9.8-11.2) in low SDI countries. Even larger variations in HALE than these were observed between countries, ranging from 1.0 year (0.4-1.7) in Saint Vincent and the Grenadines (62.4 years [59.9-64.7] in 1990 to 63.5 years [60.9-65.8] in 2017) to 23.7 years (21.9-25.6) in Eritrea (30.7 years [28.9-32.2] in 1990 to 54.4 years [51.5-57.1] in 2017). In most countries, the increase in HALE was smaller than the increase in overall life expectancy, indicating more years lived in poor health. In 180 of 195 countries and territories, females were expected to live longer than males in 2017, with extra years lived varying from 1.4 years (0.6-2.3) in Algeria to 11.9 years (10.9-12.9) in Ukraine. Of the extra years gained, the proportion spent in poor health varied largely across countries, with less than 20% of additional years spent in poor health in Bosnia and Herzegovina, Burundi, and Slovakia, whereas in Bahrain all the extra years were spent in poor health. In 2017, the highest estimate of HALE at birth was in Singapore for both females (75.8 years [72.4-78.7]) and males (72.6 years [69 " 8-75.0]) and the lowest estimates were in Central African Republic (47.0 years [43.7-50.2] for females and 42.8 years [40.1-45.6] for males). Globally, in 2017, the five leading causes of DALYs were neonatal disorders, ischaemic heart disease, stroke, lower respiratory infections, and chronic obstructive pulmonary disease. Between 1990 and 2017, age-standardised DALY rates decreased by 41.3% (38.8-43.5) for communicable diseases and by 49"8% (47.9-51.6) for neonatal disorders. For non-communicable diseases, global DALYs increased by 40.1% (36.8-43.0), although age-standardised DALY rates decreased by 18.1% (16.0-20.2). Interpretation With increasing life expectancy in most countries, the question of whether the additional years of life gained are spent in good health or poor health has been increasingly relevant because of the potential policy implications, such as health-care provisions and extending retirement ages. In some locations, a large proportion of those additional years are spent in poor health. Large inequalities in HALE and disease burden exist across countries in different SDI quintiles and between sexes. The burden of disabling conditions has serious implications for health system planning and health-related expenditures. Despite the progress made in reducing the burden of communicable diseases and neonatal disorders in low S DI countries, the speed of this progress could be increased by scaling up proven interventions. The global trends among non-communicable diseases indicate that more effort is needed to maximise HALE, such as risk prevention and attention to upstream determinants of health. Copyright (C) 2018 The Author(s). Published by Elsevier Ltd.
  •  
8.
  • Murray, C. J. L., et al. (författare)
  • Population and fertility by age and sex for 195 countries and territories, 1950-2017: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: Lancet. - : Elsevier BV. - 0140-6736. ; 392:10159, s. 1995-2051
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10-54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10-14 years and 50-54 years was estimated from data on fertility in women aged 15-19 years and 45-49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-cotnponent method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings From 1950 to 2017, TFRs decreased by 49.4% (95% uncertainty interval [UI] 46.4-52.0). The TFR decreased from 4.7 livebirths (4.5-4.9) to 2.4 livebirths (2.2-2.5), and the ASFR of mothers aged 10-19 years decreased from 37 livebirths (34-40) to 22 livebirths (19-24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83.8 million people per year since 1985. The global population increased by 197-2% (193.3-200.8) since 1950, from 2.6 billion (2.5-2.6) to 7.6 billion (7.4-7.9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2.0%; this rate then remained nearly constant until 1970 and then decreased to 1.1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2.5% in 1963 to O7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2.7%. The global average age increased from 26.6 years in 1950 to 32.1 years in 2017, and the proportion of the population that is of working age (age 15-64 years) increased from 59.9% to 65.3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1.0 livebirths (95% UI 0. 9-1.2) in Cyprus to a high of 7.1 livebirths (6.8-7.4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0.08 livebirths (0.07-0.09) in South Korea to 2.4 livebirths (2.2-2.6) in Niger, and the TFR over age 30 years (I F030; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0.3 livebirths (0.3-0-4) in Puerto Rico to a high of 3.1 livebirths (3.0-3.2) in Niger. TF030 was higher than TFU25 in 145 countries and territories in 2017.33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2.0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Copyright (C) 2018 The Author(s). Published by Elsevier Ltd.
  •  
9.
  • Naghavi, M., et al. (författare)
  • Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016
  • 2017
  • Ingår i: Lancet. - : Elsevier. - 0140-6736 .- 1474-547X. ; 390:10100, s. 1151-1210
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Monitoring levels and trends in premature mortality is crucial to understanding how societies can address prominent sources of early death. The Global Burden of Disease 2016 Study (GBD 2016) provides a comprehensive assessment of cause-specific mortality for 264 causes in 195 locations from 1980 to 2016. This assessment includes evaluation of the expected epidemiological transition with changes in development and where local patterns deviate from these trends. Methods We estimated cause-specific deaths and years of life lost (YLLs) by age, sex, geography, and year. YLLs were calculated from the sum of each death multiplied by the standard life expectancy at each age. We used the GBD cause of death database composed of: vital registration (VR) data corrected for under-registration and garbage coding; national and subnational verbal autopsy (VA) studies corrected for garbage coding; and other sources including surveys and surveillance systems for specific causes such as maternal mortality. To facilitate assessment of quality, we reported on the fraction of deaths assigned to GBD Level 1 or Level 2 causes that cannot be underlying causes of death (major garbage codes) by location and year. Based on completeness, garbage coding, cause list detail, and time periods covered, we provided an overall data quality rating for each location with scores ranging from 0 stars (worst) to 5 stars (best). We used robust statistical methods including the Cause of Death Ensemble model (CODEm) to generate estimates for each location, year, age, and sex. We assessed observed and expected levels and trends of cause-specific deaths in relation to the Socio-demographic Index (SDI), a summary indicator derived from measures of average income per capita, educational attainment, and total fertility, with locations grouped into quintiles by SDI. Relative to GBD 2015, we expanded the GBD cause hierarchy by 18 causes of death for GBD 2016. Findings The quality of available data varied by location. Data quality in 25 countries rated in the highest category (5 stars), while 48, 30, 21, and 44 countries were rated at each of the succeeding data quality levels. Vital registration or verbal autopsy data were not available in 27 countries, resulting in the assignment of a zero value for data quality. Deaths from non-communicable diseases (NCDs) represented 72.3% (95% uncertainty interval [UI] 71.2-73.2) of deaths in 2016 with 19.3% (18.5-20.4) of deaths in that year occurring from communicable, maternal, neonatal, and nutritional (CMNN) diseases and a further 8.43% (8.00-8.67) from injuries. Although age-standardised rates of death from NCDs decreased globally between 2006 and 2016, total numbers of these deaths increased; both numbers and age-standardised rates of death from CMNN causes decreased in the decade 2006-16-age-standardised rates of deaths from injuries decreased but total numbers varied little. In 2016, the three leading global causes of death in children under-5 were lower respiratory infections, neonatal preterm birth complications, and neonatal encephalopathy due to birth asphyxia and trauma, combined resulting in 1.80 million deaths (95% UI 1.59 million to 1.89 million). Between 1990 and 2016, a profound shift toward deaths at older ages occurred with a 178% (95% UI 176-181) increase in deaths in ages 90-94 years and a 210% (208-212) increase in deaths older than age 95 years. The ten leading causes by rates of age-standardised YLL significantly decreased from 2006 to 2016 (median annualised rate of change was a decrease of 2.89%); the median annualised rate of change for all other causes was lower (a decrease of 1.59%) during the same interval. Globally, the five leading causes of total YLLs in 2016 were cardiovascular diseases; diarrhoea, lower respiratory infections, and other common infectious diseases; neoplasms; neonatal disorders; and HIV/AIDS and tuberculosis. At a finer level of disaggregation within cause groupings, the ten leading causes of total YLLs in 2016 were ischaemic heart disease, cerebrovascular disease, lower respiratory infections, diarrhoeal diseases, road injuries, malaria, neonatal preterm birth complications, HIV/AIDS, chronic obstructive pulmonary disease, and neonatal encephalopathy due to birth asphyxia and trauma. Ischaemic heart disease was the leading cause of total YLLs in 113 countries for men and 97 countries for women. Comparisons of observed levels of YLLs by countries, relative to the level of YLLs expected on the basis of SDI alone, highlighted distinct regional patterns including the greater than expected level of YLLs from malaria and from HIV/AIDS across sub-Saharan Africa; diabetes mellitus, especially in Oceania; interpersonal violence, notably within Latin America and the Caribbean; and cardiomyopathy and myocarditis, particularly in eastern and central Europe. The level of YLLs from ischaemic heart disease was less than expected in 117 of 195 locations. Other leading causes of YLLs for which YLLs were notably lower than expected included neonatal preterm birth complications in many locations in both south Asia and southeast Asia, and cerebrovascular disease in western Europe. Interpretation The past 37 years have featured declining rates of communicable, maternal, neonatal, and nutritional diseases across all quintiles of SDI, with faster than expected gains for many locations relative to their SDI. A global shift towards deaths at older ages suggests success in reducing many causes of early death. YLLs have increased globally for causes such as diabetes mellitus or some neoplasms, and in some locations for causes such as drug use disorders, and conflict and terrorism. Increasing levels of YLLs might reflect outcomes from conditions that required high levels of care but for which effective treatments remain elusive, potentially increasing costs to health systems. Copyright (C) The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.
  •  
10.
  • Roth, G. A., et al. (författare)
  • Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: Lancet. - : Elsevier BV. - 0140-6736. ; 392:10159, s. 1736-1788
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Global development goals increasingly rely on country-specific estimates for benchmarking a nation's progress. To meet this need, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 estimated global, regional, national, and, for selected locations, subnational cause-specific mortality beginning in the year 1980. Here we report an update to that study, making use of newly available data and improved methods. GBD 2017 provides a comprehensive assessment of cause-specific mortality for 282 causes in 195 countries and territories from 1980 to 2017. Methods The causes of death database is composed of vital registration (VR), verbal autopsy (VA), registry, survey, police, and surveillance data. GBD 2017 added ten VA studies, 127 country-years of VR data, 502 cancer-registry country-years, and an additional surveillance country-year. Expansions of the GBD cause of death hierarchy resulted in 18 additional causes estimated for GBD 2017. Newly available data led to subnational estimates for five additional countries Ethiopia, Iran, New Zealand, Norway, and Russia. Deaths assigned International Classification of Diseases (ICD) codes for non-specific, implausible, or intermediate causes of death were reassigned to underlying causes by redistribution algorithms that were incorporated into uncertainty estimation. We used statistical modelling tools developed for GBD, including the Cause of Death Ensemble model (CODErn), to generate cause fractions and cause specific death rates for each location, year, age, and sex. Instead of using UN estimates as in previous versions, GBD 2017 independently estimated population size and fertility rate for all locations. Years of life lost (YLLs) were then calculated as the sum of each death multiplied by the standard life expectancy at each age. All rates reported here are age-standardised. Findings At the broadest grouping of causes of death (Level 1), non-communicable diseases (NC Ds) comprised the greatest fraction of deaths, contributing to 73.4% (95% uncertainty interval [UI] 72.5-74.1) of total deaths in 2017, while communicable, maternal, neonatal, and nutritional (CMNN) causes accounted for 186% (17.9-19.6), and injuries 8.0% (7.7-8.2). Total numbers of deaths from NCD causes increased from 2007 to 2017 by 22.7% (21.5-23.9), representing an additional 7.61 million (7. 20-8.01) deaths estimated in 2017 versus 2007. The death rate from NCDs decreased globally by 7.9% (7.08.8). The number of deaths for CMNN causes decreased by 222% (20.0-24.0) and the death rate by 31.8% (30.1-33.3). Total deaths from injuries increased by 2.3% (0-5-4-0) between 2007 and 2017, and the death rate from injuries decreased by 13.7% (12.2-15.1) to 57.9 deaths (55.9-59.2) per 100 000 in 2017. Deaths from substance use disorders also increased, rising from 284 000 deaths (268 000-289 000) globally in 2007 to 352 000 (334 000-363 000) in 2017. Between 2007 and 2017, total deaths from conflict and terrorism increased by 118.0% (88.8-148.6). A greater reduction in total deaths and death rates was observed for some CMNN causes among children younger than 5 years than for older adults, such as a 36.4% (32.2-40.6) reduction in deaths from lower respiratory infections for children younger than 5 years compared with a 33.6% (31.2-36.1) increase in adults older than 70 years. Globally, the number of deaths was greater for men than for women at most ages in 2017, except at ages older than 85 years. Trends in global YLLs reflect an epidemiological transition, with decreases in total YLLs from enteric infections, respirator}, infections and tuberculosis, and maternal and neonatal disorders between 1990 and 2017; these were generally greater in magnitude at the lowest levels of the Socio-demographic Index (SDI). At the same time, there were large increases in YLLs from neoplasms and cardiovascular diseases. YLL rates decreased across the five leading Level 2 causes in all SDI quintiles. The leading causes of YLLs in 1990 neonatal disorders, lower respiratory infections, and diarrhoeal diseases were ranked second, fourth, and fifth, in 2017. Meanwhile, estimated YLLs increased for ischaemic heart disease (ranked first in 2017) and stroke (ranked third), even though YLL rates decreased. Population growth contributed to increased total deaths across the 20 leading Level 2 causes of mortality between 2007 and 2017. Decreases in the cause-specific mortality rate reduced the effect of population growth for all but three causes: substance use disorders, neurological disorders, and skin and subcutaneous diseases. Interpretation Improvements in global health have been unevenly distributed among populations. Deaths due to injuries, substance use disorders, armed conflict and terrorism, neoplasms, and cardiovascular disease are expanding threats to global health. For causes of death such as lower respiratory and enteric infections, more rapid progress occurred for children than for the oldest adults, and there is continuing disparity in mortality rates by sex across age groups. Reductions in the death rate of some common diseases are themselves slowing or have ceased, primarily for NCDs, and the death rate for selected causes has increased in the past decade. Copyright (C) 2018 The Author(s). Published by Elsevier Ltd.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy