SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Phillimore Albert B.) "

Sökning: WFRF:(Phillimore Albert B.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Keogan, Katharine, et al. (författare)
  • Global phenological insensitivity to shifting ocean temperatures among seabirds
  • 2018
  • Ingår i: Nature Climate Change. - 1758-678X .- 1758-6798. ; 8:4, s. 313-318
  • Tidskriftsartikel (refereegranskat)abstract
    • Reproductive timing in many taxa plays a key role in determining breeding productivity(1), and is often sensitive to climatic conditions(2). Current climate change may alter the timing of breeding at different rates across trophic levels, potentially resulting in temporal mismatch between the resource requirements of predators and their prey(3). This is of particular concern for higher-trophic-level organisms, whose longer generation times confer a lower rate of evolutionary rescue than primary producers or consumers(4). However, the disconnection between studies of ecological change in marine systems makes it difficult to detect general changes in the timing of reproduction(5). Here, we use a comprehensive meta-analysis of 209 phenological time series from 145 breeding populations to show that, on average, seabird populations worldwide have not adjusted their breeding seasons over time (-0.020 days yr(-1)) or in response to sea surface temperature (SST) (-0.272 days degrees C-1) between 1952 and 2015. However, marked between-year variation in timing observed in resident species and some Pelecaniformes and Suliformes (cormorants, gannets and boobies) may imply that timing, in some cases, is affected by unmeasured environmental conditions. This limited temperature-mediated plasticity of reproductive timing in seabirds potentially makes these top predators highly vulnerable to future mismatch with lower-trophic-level resources(2).
  •  
2.
  • Phillimore, Albert B., et al. (författare)
  • Dissecting the contributions of plasticity and local adaptation to the phenology of a butterfly and its host plants
  • 2012
  • Ingår i: American Naturalist. - 0003-0147 .- 1537-5323. ; 180:5, s. 655-670
  • Tidskriftsartikel (refereegranskat)abstract
    • Phenology affects the abiotic and biotic conditions that an organism encounters and, consequently, its fitness. For populations of high-latitude species, spring phenology often occurs earlier in warmer years and regions. Here we apply a novel approach, a comparison of slope of phenology on temperature over space versus over time, to identify the relative roles of plasticity and local adaptation in generating spatial phenological variation in three interacting species, a butterfly, Anthocharis cardamines, and its two host plants, Cardamine pratensis and Alliaria petiolata. All three species overlap in the time window over which mean temperatures best predict variation in phenology, and we find little evidence that a day length requirement causes the sensitive time window to be delayed as latitude increases. The focal species all show pronounced temperature-mediated phenological plasticity of similar magnitude. While we find no evidence for local adaptation in the flowering times of the plants, geographic variation in the phenology of the butterfly is consistent with countergradient local adaptation. The butterfly's phenology appears to be better predicted by temperature than it is by the flowering times of either host plant, and we find no evidence that coevolution has generated geographic variation in adaptive phenological plasticity.
  •  
3.
  • Samplonius, Jelmer M., et al. (författare)
  • Strengthening the evidence base for temperature-mediated phenological asynchrony and its impacts
  • 2021
  • Ingår i: Nature Ecology and Evolution. - : Nature Publishing Group. - 2397-334X. ; 5:2, s. 155-164
  • Forskningsöversikt (refereegranskat)abstract
    • Climate warming has caused the seasonal timing of many components of ecological food chains to advance. In the context of trophic interactions, the match–mismatch hypothesis postulates that differential shifts can lead to phenological asynchrony with negative impacts for consumers. However, at present there has been no consistent analysis of the links between temperature change, phenological asynchrony and individual-to-population-level impacts across taxa, trophic levels and biomes at a global scale. Here, we propose five criteria that all need to be met to demonstrate that temperature-mediated trophic asynchrony poses a growing risk to consumers. We conduct a literature review of 109 papers studying 129 taxa, and find that all five criteria are assessed for only two taxa, with the majority of taxa only having one or two criteria assessed. Crucially, nearly every study was conducted in Europe or North America, and most studies were on terrestrial secondary consumers. We thus lack a robust evidence base from which to draw general conclusions about the risk that climate-mediated trophic asynchrony may pose to populations worldwide.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy