SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pierson Don) ;pers:(Yao Huaxia)"

Sökning: WFRF:(Pierson Don) > Yao Huaxia

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Golub, Malgorzata, et al. (författare)
  • A framework for ensemble modelling of climate change impacts on lakes worldwide : the ISIMIP Lake Sector
  • 2022
  • Ingår i: Geoscientific Model Development. - : Copernicus Publications. - 1991-959X .- 1991-9603. ; 15:11, s. 4597-4623
  • Tidskriftsartikel (refereegranskat)abstract
    • Empirical evidence demonstrates that lakes and reservoirs are warming across the globe. Consequently, there is an increased need to project future changes in lake thermal structure and resulting changes in lake biogeochemistry in order to plan for the likely impacts. Previous studies of the impacts of climate change on lakes have often relied on a single model forced with limited scenario-driven projections of future climate for a relatively small number of lakes. As a result, our understanding of the effects of climate change on lakes is fragmentary, based on scattered studies using different data sources and modelling protocols, and mainly focused on individual lakes or lake regions. This has precluded identification of the main impacts of climate change on lakes at global and regional scales and has likely contributed to the lack of lake water quality considerations in policy-relevant documents, such as the Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC). Here, we describe a simulation protocol developed by the Lake Sector of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) for simulating climate change impacts on lakes using an ensemble of lake models and climate change scenarios for ISIMIP phases 2 and 3. The protocol prescribes lake simulations driven by climate forcing from gridded observations and different Earth system models under various representative greenhouse gas concentration pathways (RCPs), all consistently bias-corrected on a 0.5 degrees x 0.5 degrees global grid. In ISIMIP phase 2, 11 lake models were forced with these data to project the thermal structure of 62 well-studied lakes where data were available for calibration under historical conditions, and using uncalibrated models for 17 500 lakes defined for all global grid cells containing lakes. In ISIMIP phase 3, this approach was expanded to consider more lakes, more models, and more processes. The ISIMIP Lake Sector is the largest international effort to project future water temperature, thermal structure, and ice phenology of lakes at local and global scales and paves the way for future simulations of the impacts of climate change on water quality and biogeochemistry in lakes.
  •  
2.
  • Guo, Mingyang, et al. (författare)
  • Validation and Sensitivity Analysis of a 1-D Lake Model Across Global Lakes
  • 2021
  • Ingår i: Journal of Geophysical Research - Atmospheres. - : American Geophysical Union (AGU). - 2169-897X .- 2169-8996. ; 126:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Lakes have important influence on weather and climate from local to global scales. However, their prediction using numerical models is notoriously difficult because lakes are highly heterogeneous across the globe, but observations are sparse. Here, we assessed the performance of a 1‐D lake model in simulating the thermal structures of 58 lakes with diverse morphometric and geographic characteristics by following the phase 2a local lake protocol of the Intersectoral Impact Model Intercomparison Project (ISIMIP2a). After calibration, the root‐mean‐square errors (RMSE) were below 2°C for 70% and 75% of the lakes for epilimnion and full‐profile temperature simulations, with an average of 1.71°C and 1.43°C, respectively. The model performance mainly depended on lake shape rather than location, supporting the possibility of grouping model parameters by lake shape for global applications. Furthermore, through machine‐learning based parameter sensitivity tests, we identified turbulent heat fluxes, wind‐driven mixing, and water transparency as the major processes controlling lake thermal and mixing regimes. Snow density was also important for modeling the ice phenology of high‐latitude lakes. The relative influence of the key processes and the corresponding parameters mainly depended on lake latitude and depth. Turbulent heat fluxes showed a decreasing importance in affecting epilimnion temperature with increasing latitude. Wind‐driven mixing was less influential to lake stratification for deeper lakes while the impact of light extinction, on the contrary, showed a positive correlation with lake depth. Our findings may guide improvements in 1‐D lake model parameterizations to achieve higher fidelity in simulating global lake thermal dynamics.
  •  
3.
  • Hrycik, Allison R., et al. (författare)
  • Earlier winter/spring runoff and snowmelt during warmer winters lead to lower summer chlorophyll-a in north temperate lakes
  • 2021
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 27:19, s. 4615-4629
  • Tidskriftsartikel (refereegranskat)abstract
    • Winter conditions, such as ice cover and snow accumulation, are changing rapidly at northern latitudes and can have important implications for lake processes. For example, snowmelt in the watershed—a defining feature of lake hydrology because it delivers a large portion of annual nutrient inputs—is becoming earlier. Consequently, earlier and a shorter duration of snowmelt are expected to affect annual phytoplankton biomass. To test this hypothesis, we developed an index of runoff timing based on the date when 50% of cumulative runoff between January 1 and May 31 had occurred. The runoff index was computed using stream discharge for inflows, outflows, or for flows from nearby streams for 41 lakes in Europe and North America. The runoff index was then compared with summer chlorophyll-a (Chl-a) concentration (a proxy for phytoplankton biomass) across 5–53 years for each lake. Earlier runoff generally corresponded to lower summer Chl-a. Furthermore, years with earlier runoff also had lower winter/spring runoff magnitude, more protracted runoff, and earlier ice-out. We examined several lake characteristics that may regulate the strength of the relationship between runoff timing and summer Chl-a concentrations; however, our tested covariates had little effect on the relationship. Date of ice-out was not clearly related to summer Chl-a concentrations. Our results indicate that ongoing changes in winter conditions may have important consequences for summer phytoplankton biomass and production.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy