SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pierson Don) srt2:(2020-2023);lar1:(lu)"

Search: WFRF:(Pierson Don) > (2020-2023) > Lund University

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Donis, Daphne, et al. (author)
  • Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave summer
  • 2021
  • In: Limnology and Oceanography. - : John Wiley & Sons. - 0024-3590 .- 1939-5590. ; 66:12, s. 4314-4333
  • Journal article (peer-reviewed)abstract
    • To determine the drivers of phytoplankton biomass, we collected standardized morphometric, physical, and biological data in 230 lakes across the Mediterranean, Continental, and Boreal climatic zones of the European continent. Multilinear regression models tested on this snapshot of mostly eutrophic lakes (median total phosphorus [TP] = 0.06 and total nitrogen [TN] = 0.7 mg L-1), and its subsets (2 depth types and 3 climatic zones), show that light climate and stratification strength were the most significant explanatory variables for chlorophyll a (Chl a) variance. TN was a significant predictor for phytoplankton biomass for shallow and continental lakes, while TP never appeared as an explanatory variable, suggesting that under high TP, light, which partially controls stratification strength, becomes limiting for phytoplankton development. Mediterranean lakes were the warmest yet most weakly stratified and had significantly less Chl a than Boreal lakes, where the temperature anomaly from the long-term average, during a summer heatwave was the highest (+4 degrees C) and showed a significant, exponential relationship with stratification strength. This European survey represents a summer snapshot of phytoplankton biomass and its drivers, and lends support that light and stratification metrics, which are both affected by climate change, are better predictors for phytoplankton biomass in nutrient-rich lakes than nutrient concentrations and surface temperature.
  •  
2.
  • Urrutia-Cordero, P., et al. (author)
  • SITES AquaNet: An open infrastructure for mesocosm experiments with high frequency sensor monitoring across lakes
  • 2021
  • In: Limnology and Oceanography-Methods. - : Wiley. - 1541-5856. ; 19:6, s. 385-400
  • Journal article (peer-reviewed)abstract
    • For aquatic scientists mesocosm experiments are important tools for hypothesis testing as they offer a compromise between experimental control and realism. Here we present a new mesocosm infrastructure-SITES AquaNET-located in five lakes connected to field stations in Sweden that cover a similar to 760 km latitudinal gradient. SITES AquaNet overcomes major hindrances in aquatic experimental research through: (i) openness to the scientific community, (ii) the potential to implement coordinated experiments across sites and time, and (iii) high-frequency measurements (temperature, photosynthetic photon flux density, turbidity and dissolved oxygen, chlorophyll a and phycocyanin concentrations) with an autonomous sensor system. Moreover, the infrastructure provides operational guidance and sensor expertise from technical staff, and connections to a multi-layered monitoring programme ("SITES Water") for each lake. This enables ecological observations from whole lake ecosystems to be compared with experimental studies aiming at disentangling major drivers and mechanisms underlying observed changes. Here we describe the technical properties of the infrastructure along with possibilities for experimental manipulations to tackle pressing issues in aquatic ecology and global change science. As a proof of concept, we also present a first mesocosm experiment across all five field sites with a cross-factorial design to evaluate responses of the sensor measurements to press/bottom-up (constant light reduction) and pulse/top-down (temporary fish predation) disturbances. This demonstrates the suitability of the infrastructure and autonomous sensor system to host modularized experiments and exemplifies the power and advantages of the approach to integrate a network of mecsocosm facilities with manageable costs across large geographic areas.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view