SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pihlajamäki Jussi) ;lar1:(gu)"

Sökning: WFRF:(Pihlajamäki Jussi) > Göteborgs universitet

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dongiovanni, Paola, et al. (författare)
  • Protein phosphatase 1 regulatory subunit 3B gene variation protects against hepatic fat accumulation and fibrosis in individuals at high risk of nonalcoholic fatty liver disease.
  • 2018
  • Ingår i: Hepatology communications. - : Ovid Technologies (Wolters Kluwer Health). - 2471-254X. ; 2:6, s. 666-675
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonalcoholic fatty liver disease (NAFLD) is a major cause of liver damage and has a strong genetic component. The rs4841132 G>A variant, modulating the expression of protein phosphatase 1 regulatory subunit 3B (PPP1R3B), which is involved in glycogen synthesis, has been reported to reduce the risk of NAFLD but at the same time may favor liver disease by facilitating glycogen accumulation. The aim of this study was to assess the impact of rs4841132 on development of histologic steatosis and fibrosis in 1,388 European individuals in a liver biopsy cohort, on NAFLD hepatocellular carcinoma in a cross-sectional Italian cohort (n = 132 cases), and on liver disease at the population level in the United Kingdom Biobank cohort. We investigated the underlying mechanism by examining the impact of the variant on gene expression profiles. In the liver biopsy cohort, the rs4841132 minor A allele was associated with protection against steatosis (odds ratio [OR], 0.63; 95% confidence interval [CI], 0.42-0.95; P = 0.03) and clinically significant fibrosis (OR, 0.35; 95% CI, 0.14-0.87; P = 0.02) and with reduced circulating cholesterol (P = 0.02). This translated into protection against hepatocellular carcinoma development (OR, 0.22; 95% CI, 0.07-0.70; P = 0.01). At the population level, the rs4841132 variation was not associated with nonalcoholic or nonviral diseases of the liver but was associated with lower cholesterol (P = 1.7 × 10-8). In individuals with obesity, the A allele protecting against steatosis was associated with increased PPP1R3B messenger RNA expression and activation of lipid oxidation and with down-regulation of pathways related to lipid metabolism, inflammation, and cell cycle. Conclusion: The rs4841132 A allele is associated with protection against hepatic steatosis and fibrosis in individuals at high risk of NAFLD but not in the general population and against dyslipidemia. The mechanism may be related to modulation of PPP1R3B expression and hepatic lipid metabolism. (Hepatology Communications 2018;2:666-675).
  •  
2.
  • Grimaudo, Stefania, et al. (författare)
  • NR1H4 rs35724 G>C variant modulates liver damage in nonalcoholic fatty liver disease.
  • 2021
  • Ingår i: Liver international. - : Wiley. - 1478-3231 .- 1478-3223. ; 41:11, s. 2712-2719
  • Tidskriftsartikel (refereegranskat)abstract
    • Farnesoid X receptor (FXR) plays a key role in bile acid and lipid homeostasis. Experimental evidence suggests that it can modulate liver damage related to nonalcoholic fatty liver disease (NAFLD). We examined the impact of the NR1H4 rs35724 G>C, encoding for FXR, on liver damage in a large cohort of patients at risk of steatohepatitis.We considered 2,660 consecutive individuals at risk of steatohepatitis with liver histology. The rs35724 G>C polymorphisms were genotyped by TaqMan assays. Gene expression was evaluated by RNASeq in a subset of patients (n = 124).The NR1H4 rs35724 CC genotype, after adjusting for clinic-metabolic and genetic confounders and for enrolling centre, was protective against severity of steatosis (GG vs CC OR 0.77, 95% CI 0.62-0.95; P = .01), steatohepatitis (GG vs CC OR 0.62, 95% CI 0.47-0.83; P = .001) and severity of fibrosis (GG vs CC OR 0.83, 95% CI 0.67-0.98; P = .04). The C allele was associated with higher total circulating cholesterol (P = .01). Patients carrying the NR1H4 rs35724 C allele had significantly higher hepatic mRNA levels of FXR and were associated with higher hepatic FGFR4 and Cyp39A1 that are in turn involved in bile acid synthesis.Increased hepatic FXR expression due to the NR1H4 rs35724 C allele is linked to higher serum cholesterol but protects against steatosis, steatohepatitis and liver fibrosis. The translational relevance of these results for patient risk stratification and FXR-targeted therapy warrants further investigation.
  •  
3.
  • Mancina, Rosellina Margherita, et al. (författare)
  • PSD3 downregulation confers protection against fatty liver disease.
  • 2022
  • Ingår i: Nature metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 4:1, s. 60-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Fatty liver disease (FLD) is a growing health issue with burdening unmet clinical needs. FLD has a genetic component but, despite the common variants already identified, there is still a missing heritability component. Using a candidate gene approach, we identify a locus (rs71519934) at the Pleckstrin and Sec7 domain-containing 3 (PSD3) gene resulting in a leucine to threonine substitution at position 186 of the protein (L186T) that reduces susceptibility to the entire spectrum of FLD in individuals at risk. PSD3 downregulation by short interfering RNA reduces intracellular lipid content in primary human hepatocytes cultured in two and three dimensions, and in human and rodent hepatoma cells. Consistent with this, Psd3 downregulation by antisense oligonucleotides in vivo protects against FLD in mice fed a non-alcoholic steatohepatitis-inducing diet. Thus, translating these results to humans, PSD3 downregulation might be a future therapeutic option for treating FLD.
  •  
4.
  • Mancina, Rosellina Margherita, et al. (författare)
  • The MBOAT7-TMC4 Variant rs641738 Increases Risk of Nonalcoholic Fatty Liver Disease in Individuals of European Descent.
  • 2016
  • Ingår i: Gastroenterology. - : Elsevier BV. - 1528-0012 .- 0016-5085. ; 150:5, s. 1219-1230
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonalcoholic fatty liver disease (NAFLD) is a leading cause of liver damage and is characterized by steatosis. Genetic factors increase risk for progressive NAFLD. A genome-wide association study showed that the rs641738 C>T variant in the locus that contains the membrane bound O-acyltransferase domain-containing 7 gene (MBOAT7, also called LPIAT1) and transmembrane channel-like 4 gene (TMC4) increased the risk for cirrhosis in alcohol abusers. We investigated whether the MBOAT7-TMC4 is a susceptibility locus for the development and progression of NAFLD.
  •  
5.
  • Meijnikman, A. S., et al. (författare)
  • Hyperinsulinemia Is Highly Associated With Markers of Hepatocytic Senescence in Two Independent Cohorts
  • 2022
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 71:9, s. 1929-1936
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellular senescence is an essentially irreversible growth arrest that occurs in response to various cellular stressors and may contribute to development of type 2 diabetes mellitus and nonalcoholic fatty liver disease (NAFLD). In this article, we investigated whether chronically elevated insulin levels are associated with cellular senescence in the human liver. In 107 individuals undergoing bariatric surgery, hepatic senescence markers were assessed by immunohistochemistry as well as transcriptomics. A subset of 180 participants from the ongoing Finnish Kuopio OBesity Surgery (KOBS) study was used as validation cohort. We found plasma insulin to be highly associated with various markers of cellular senescence in liver tissue. The liver transcriptome of individuals with high insulin revealed significant upregulation of several genes associated with senescence: p21, TGFβ, PI3K, HLA-G, IL8, p38, Ras, and E2F. Insulin associated with hepatic senescence independently of NAFLD and plasma glucose. By using transcriptomic data from the KOBS study, we could validate the association of insulin with p21 in the liver. Our results support a potential role for hyperinsulinemia in induction of cellular senescence in the liver. These findings suggest possible benefits of lowering insulin levels in obese individuals with insulin resistance.
  •  
6.
  • Männistö, Ville, et al. (författare)
  • Protein Phosphatase 1 Regulatory Subunit 3B Genotype at rs4240624 Has a Major Effect on Gallbladder Bile Composition
  • 2021
  • Ingår i: Hepatology Communications. - : Ovid Technologies (Wolters Kluwer Health). - 2471-254X. ; 5, s. 244-257
  • Tidskriftsartikel (refereegranskat)abstract
    • The protein phosphatase 1 regulatory subunit 3B (PPP1R3B) gene is a target of farnesoid X receptor (FXR), which is a major regulator of bile acid metabolism. Both PPP1R3B and FXR have been suggested to take part in glycogen metabolism, which may explain the association of PPP1R3B gene variants with altered hepatic computed tomography attenuation. We analyzed the effect of PPP1R3B rs4240624 variant on bile acid composition in individuals with obesity. The study cohort consisted of 242 individuals from the Kuopio Obesity Surgery Study (73 men, 169 women, age 47.6 ± 9.0 years, body mass index 43.2 ± 5.4 kg/m2) with PPP1R3B genotype and liver RNA sequencing (RNA-seq) data available. Fasting plasma and gallbladder bile samples were collected from 50 individuals. Bile acids in plasma did not differ based on the PPP1R3B rs4240624 genotype. However, the concentration of total bile acids (109 ± 55 vs. 35 ± 19 mM; P = 1.0 × 10−5) and all individual bile acids (also 7α-hydroxy-4-cholesten-3-one [C4]) measured from bile were significantly lower in those with the AG genotype compared to those with the AA genotype. In addition, total cholesterol (P = 0.011) and phospholipid (P = 0.001) levels were lower in individuals with the AG genotype, but cholesterol saturation index did not differ, indicating that the decrease in cholesterol and phospholipid levels was secondary to the change in bile acids. Liver RNA-seq data demonstrated that expression of PPP1R3B, tankyrase (TNKS), Homo sapiens chromosome 8 clone RP11-10A14.5 (AC022784.1 [LOC157273]), Homo sapiens chromosome 8 clone RP11-375N15.1 (AC021242.1), and Homo sapiens chromosome 8, clone RP11-10A14 (AC022784.6) associated with the PPP1R3B genotype. In addition, genes enriched in transmembrane transport and phospholipid binding pathways were associated with the genotype. Conclusion: The rs4240624 variant in PPP1R3B has a major effect on the composition of gallbladder bile. Other transcripts in the same loci may be important mediators of the variant effect.
  •  
7.
  • Oveis, Jamialahmadi, et al. (författare)
  • Exome-wide Association Study on Alanine Aminotransferase Identifies Sequence Variants in the GPAM and APOE Associated with Fatty Liver Disease.
  • 2021
  • Ingår i: Gastroenterology. - : Elsevier BV. - 1528-0012 .- 0016-5085. ; 160:5, s. 1634-1646.E7
  • Tidskriftsartikel (refereegranskat)abstract
    • Fatty liver disease (FLD) is a growing epidemic that is expected to be the leading cause of end-stage liver disease within the next decade. Both environmental and genetic factors contribute to the susceptibility of FLD. Several genetic variants contributing to FLD have been identified in exome-wide association studies. However, there is still a missing hereditability indicating that other genetic variants are yet to be discovered.To find genes involved in FLD, we first examined the association of missense and nonsense variants with alanine aminotransferase (ALT) at an exome-wide level in 425,671 participants from the UK Biobank. We then validated genetic variants with liver fat content in 8,930 participants in whom liver fat measurement was available, and replicated two genetic variants in three independent cohorts comprising 2,621 individuals with available liver biopsy.We identified 190 genetic variants independently associated with ALT after correcting for multiple testing with Bonferroni method. The majority of these variants were not previously associated with this trait. Among those associated, there was a striking enrichment of genetic variants influencing lipid metabolism. We identified the variants rs2792751 in GPAM/GPAT1, the gene encoding glycerol-3-phosphate acyltransferase, mitochondrial, and rs429358 in APOE, the gene encoding apolipoprotein E, as robustly associated with liver fat content and liver disease after adjusting for multiple testing. Both genes affect lipid metabolism in the liver.We identified two novel genetic variants in GPAM and APOE that are robustly associated with steatosis and liver damage. These findings may help to better elucidate the genetic susceptibility to FLD onset and progression.
  •  
8.
  • Pipitone, Rosaria M., et al. (författare)
  • Programmed cell death 1 genetic variant and liver damage in nonalcoholic fatty liver disease
  • 2023
  • Ingår i: Liver International. - 1478-3223 .- 1478-3231. ; 43:8, s. 1761-71
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Aims: Programmed cell death 1/programmed cell death-ligand 1 (PD-1/PDL-1) axis has been reported to modulate liver inflammation and progression to hepatocellular carcinoma (HCC) in patients with nonalcoholic fatty liver disease (NAFLD). Here, we examined whether the PDCD1 variation is associated with NAFLD severity in individuals with liver biopsy. Methods: We examined the impact of PDCD1 gene variants on HCC, as robust severe liver disease phenotype in UK Biobank participants. The strongest genetic association with the rs13023138 G>C variation was subsequently tested for association with liver damage in 2889 individuals who underwent liver biopsy for suspected nonalcoholic steatohepatitis (NASH). Hepatic transcriptome was examined by RNA-Seq in a subset of NAFLD individuals (n = 121). Transcriptomic and deconvolution analyses were performed to identify biological pathways modulated by the risk allele. Results: The rs13023138 C>G showed the most robust association with HCC in UK Biobank (p = 5.28E-4, OR = 1.32, 95% CI [1.1, 1.5]). In the liver biopsy cohort, rs13023138 G allele was independently associated with severe steatosis (OR 1.17, 95% CI 1.02-1.34; p =.01), NASH (OR 1.22, 95% CI 1.09-1.37; p <.001) and advanced fibrosis (OR 1.26, 95% CI 1.06-1.50; p =.007). At deconvolution analysis, rs13023138 G>C allele was linked to higher hepatic representation of M1 macrophages, paralleled by upregulation of pathways related to inflammation and higher expression of CXCR6. Conclusions: The PDCD1 rs13023138 G allele was associated with HCC development in the general population and with liver disease severity in patients at high risk of NASH.
  •  
9.
  • Sasidharan, Kavitha, et al. (författare)
  • IL32 downregulation lowers triglycerides and type I collagen in di-lineage human primary liver organoids.
  • 2024
  • Ingår i: Cell reports. Medicine. - 2666-3791. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Steatotic liver disease (SLD) prevails as the most common chronic liver disease yet lack approved treatments due to incomplete understanding of pathogenesis. Recently, elevated hepatic and circulating interleukin 32 (IL-32) levels were found in individuals with severe SLD. However, the mechanistic link between IL-32 and intracellular triglyceride metabolism remains to be elucidated. We demonstrate in vitro that incubation with IL-32β protein leads to an increase in intracellular triglyceride synthesis, while downregulation of IL32 by small interfering RNA leads to lower triglyceride synthesis and secretion in organoids from human primary hepatocytes. This reduction requires the upregulation of Phospholipase A2 group IIA (PLA2G2A). Furthermore, downregulation of IL32 results in lower intracellular type I collagen levels in di-lineage human primary hepatic organoids. Finally, we identify a genetic variant of IL32 (rs76580947) associated with lower circulating IL-32 and protection against SLD measured by non-invasive tests. These data suggest that IL32 downregulation may be beneficial against SLD.
  •  
10.
  • Stefania, Grimaudo, et al. (författare)
  • PCSK9 rs11591147 R46L Loss-of-Function Variant Protects Against Liver Damage in Individuals with NAFLD.
  • 2021
  • Ingår i: Liver international : official journal of the International Association for the Study of the Liver. - : Wiley. - 1478-3231. ; 41:2, s. 321-332
  • Tidskriftsartikel (refereegranskat)abstract
    • The proproteinconvertasesubtilisin/kexin type 9(PCSK9) plays a key role in cholesterol homeostasis, and its inhibition represents an effective therapy to lower LDL-C levels. In this study, we examined the impact of the PCSK9 rs11591147 loss-of-function (LOF) variant on liver damage in a multicenter collection of patients at risk of nonalcoholic steatohepatitis (NASH), in clinical samples and experimental models.We considered 1,874 consecutive individuals at risk of NASH as determined by histology. The SNP rs11591147, encoding for the p.R46L variant of PCSK9,was genotyped by TaqMan assays. We also evaluated 1)PCSK9 mRNA hepatic expression in human liver, and 2)the impact of a NASH-inducing diet in mice with hepatic overexpression of human PCSK9.Carriers of PCSK9 rs11591147 had lower circulating LDL-C levels and were protected against NAFLD (OR0.42; 95%C.I0.22-0.81; P=0.01), NASH (OR0.48;95%C.I.0.26-0.87;P=0.01)and more severe fibrosis (OR0.55; 95%C.I.0.32-0.94; P=0.03) independently of clinical, metabolic and genetic confounding factors. PCSK9 hepatic expression was directly correlated with liver steatosis(P=0.03). Finally, liver-specific overexpression of human PCSK9 in male mice drives NAFLD and fibrosis upon a dietary challenge.In individuals at risk of NASH, PCSK9 was induced with hepatic fat accumulation and PCSK9 rs11591147 LOF variant was protective against liver steatosis, NASH and fibrosis, suggesting PCSK9 inhibition may be a new therapeutic strategy to treat NASH.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy