SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pike G.) ;spr:eng"

Sökning: WFRF:(Pike G.) > Engelska

  • Resultat 1-10 av 85
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Crenshaw, D. M., et al. (författare)
  • Multiwavelength observations of short-timescale variability in NGC 4151. I. Ultraviolet observations
  • 1996
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 470:1, s. 322-335335
  • Tidskriftsartikel (refereegranskat)abstract
    • Presents the results of an intensive ultraviolet monitoring campaign on the Seyfert 1 galaxy NGC 4151, as part of an effort to study its short-timescale variability over a broad range in wavelength. The nucleus of NGC 4151 was observed continuously with the International Ultraviolet Explorer for 9.3 days, yielding a pair of LWP and SWP spectra every ~70 minutes, and during 4 hr periods for 4 days prior to and 5 days after the continuous-monitoring period. The sampling frequency of the observations is an order of magnitude higher than that of any previous UV monitoring campaign on a Seyfert galaxy. The continuum fluxes in bands from 1275 to 2688 Aring went through four significant and well-defined ldquoeventsrdquo of duration 2-3 days during the continuous-monitoring period. The authors find that the amplitudes of the continuum variations decrease with increasing wavelength, which extends a general trend for this and other Seyfert galaxies to smaller timescales (i.e., a few days). The continuum variations in all the UV bands are simultaneous to within an accuracy of ~0.15 days, providing a strict constraint on continuum models. The emission-line light curves show only one major event during the continuous monitoring (a slow rise followed by a shallow dip) and do not correlate well with continuum light curves over the short duration of the campaign, because the timescale for continuum variations is apparently smaller than the response times of the emission lines
  •  
4.
  • Hibar, Derrek P., et al. (författare)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
5.
  • Thompson, Paul M., et al. (författare)
  • The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • Ingår i: BRAIN IMAGING BEHAV. - : Springer Science and Business Media LLC. - 1931-7557 .- 1931-7565. ; 8:2, s. 153-182
  • Tidskriftsartikel (refereegranskat)abstract
    • The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
  •  
6.
  •  
7.
  • Edelson, R. A., et al. (författare)
  • Multiwavelength observations of short-timescale variability in NGC 4151. IV. Analysis of multiwavelength continuum variability
  • 1996
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 470:1, s. 364-377377
  • Tidskriftsartikel (refereegranskat)abstract
    • For pt.III see ibid., vol.470, no.1, p.349-63 (1996). Combines data from the three preceding papers in order to analyze the multi wave-band variability and spectral energy distribution of the Seyfert 1 galaxy NGC 4151 during the 1993 December monitoring campaign. The source, which was near its peak historical brightness, showed strong, correlated variability at X-ray, ultraviolet, and optical wavelengths. The strongest variations were seen in medium-energy (~1.5 keV) X-rays, with a normalized variability amplitude (NVA) of 24%. Weaker (NVA=6%) variations (uncorrelated with those at lower energies) were seen at soft gamma-ray energies of ~100 keV. No significant variability was seen in softer (0.1-1 keV) X-ray bands. In the ultraviolet/optical regime, the NVA decreased from 9% to 1% as the wavelength increased from 1275 to 6900 Aring. These data do not probe extreme ultraviolet (1200 Aring to 0.1 keV) or hard X-ray (250 keV) variability. The phase differences between variations in different bands were consistent with zero lag, with upper limits of lsim0.15 day between 1275 Aring and the other ultraviolet bands, lsim0.3 day between 1275 Aring and 1.5 keV, and lsim1 day between 1275 and 5125 Aring. These tight limits represent more than an order of magnitude improvement over those determined in previous multi-wave-band AGN monitoring campaigns. The ultraviolet fluctuation power spectra showed no evidence for periodicity, but were instead well fitted with a very steep, red power law (ales-2.5)
  •  
8.
  • Satizabal, Claudia L., et al. (författare)
  • Genetic architecture of subcortical brain structures in 38,851 individuals
  • 2019
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:11, s. 1624-
  • Tidskriftsartikel (refereegranskat)abstract
    • Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 85
Typ av publikation
tidskriftsartikel (78)
konferensbidrag (4)
rapport (2)
bokkapitel (1)
Typ av innehåll
refereegranskat (75)
övrigt vetenskapligt/konstnärligt (9)
populärvet., debatt m.m. (1)
Författare/redaktör
Pike, MC (17)
Zheng, W. (16)
Chang-Claude, J (16)
Shu, XO (13)
Lissowska, J (13)
Goodman, MT (13)
visa fler...
Modugno, F. (13)
Hogdall, E (13)
Riboli, Elio (12)
Wu, AH (12)
Lambrechts, D (12)
Vergote, I. (12)
Menon, U (12)
Moysich, KB (12)
Anton-Culver, H (11)
Lubinski, J (11)
Risch, HA (11)
Gronwald, J (11)
Rossing, MA (11)
Cook, LS (11)
Gentry-Maharaj, A (11)
Olsson, Håkan (10)
Butzow, R (10)
Albanes, Demetrius (10)
Fasching, PA (10)
Beckmann, MW (10)
Jakubowska, A (10)
Nevanlinna, H (10)
Chenevix-Trench, G (10)
Trichopoulos, Dimitr ... (10)
Ziogas, A (10)
Goode, EL (10)
Hunter, David J (10)
Sellers, TA (10)
Odunsi, K (10)
Karlan, BY (10)
Wentzensen, N (10)
Brinton, LA (10)
Kjaer, SK (10)
Kiemeney, LA (10)
Ramus, SJ (10)
Lurie, G. (10)
Tworoger, SS (10)
Ness, RB (10)
Doherty, JA (10)
Heitz, F (10)
Cramer, DW (10)
Le, ND (10)
Brooks-Wilson, A (10)
Song, HL (10)
visa färre...
Lärosäte
Karolinska Institutet (60)
Lunds universitet (19)
Umeå universitet (18)
Uppsala universitet (17)
Göteborgs universitet (7)
Stockholms universitet (5)
visa fler...
Luleå tekniska universitet (3)
Linköpings universitet (1)
Mittuniversitetet (1)
Naturhistoriska riksmuseet (1)
visa färre...
Språk
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (44)
Naturvetenskap (11)
Samhällsvetenskap (2)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy