SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pollin Toni I.) "

Sökning: WFRF:(Pollin Toni I.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fuchsberger, Christian, et al. (författare)
  • The genetic architecture of type 2 diabetes
  • 2016
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 536:7614, s. 41-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.
  •  
2.
  • Jablonski, K A, et al. (författare)
  • Common variants in 40 genes assessed for diabetes incidence and response to metformin and lifestyle intervention in the diabetes prevention program
  • 2010
  • Ingår i: Diabetes. - : American Diabetes Association Inc.. - 1939-327X .- 0012-1797. ; Oct:59(10), s. 2672-2681
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Genome-wide association studies have begun to elucidate the genetic architecture of type 2 diabetes. We examined whether single nucleotide polymorphisms (SNPs) identified through targeted complementary approaches affect diabetes incidence in the at-risk population of the Diabetes Prevention Program (DPP) and whether they influence a response to preventive interventions. RESEARCH DESIGN AND METHODS: We selected SNPs identified by prior genome-wide association studies for type 2 diabetes and related traits, or capturing common variation in 40 candidate genes previously associated with type 2 diabetes, implicated in monogenic diabetes, encoding type 2 diabetes drug targets or drug-metabolizing/transporting enzymes, or involved in relevant physiological processes. We analyzed 1,590 SNPs for association with incident diabetes and their interaction with response to metformin or lifestyle interventions in 2,994 DPP participants. We controlled for multiple hypothesis testing by assessing false discovery rates. RESULTS: We replicated the association of variants in the metformin transporter gene SLC47A1 with metformin response and detected nominal interactions in the AMP kinase (AMPK) gene STK11, the AMPK subunit genes PRKAA1 and PRKAA2, and a missense SNP in SLC22A1, which encodes another metformin transporter. The most significant association with diabetes incidence occurred in the AMPK subunit gene PRKAG2 (hazard ratio 1.24, 95% CI 1.09-1.40, P = 7 × 10(-4)). Overall, there were nominal associations with diabetes incidence at 85 SNPs and nominal interactions with the metformin and lifestyle interventions at 91 and 69 mostly nonoverlapping SNPs, respectively. The lowest P values were consistent with experiment-wide 33% false discovery rates. CONCLUSIONS: We have identified potential genetic determinants of metformin response. These results merit confirmation in independent samples.
  •  
3.
  • Manning, Alisa, et al. (författare)
  • A Low-Frequency Inactivating AKT2 Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 66:7, s. 2019-2032
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting plasma insulin (FI), a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in FI levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-h insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio 1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.
  •  
4.
  • Flannick, Jason, et al. (författare)
  • Data Descriptor : Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
  • 2017
  • Ingår i: Scientific Data. - : Nature Publishing Group. - 2052-4463. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (> 80% of low-frequency coding variants in similar to ~82 K Europeans via the exome chip, and similar to ~90% of low-frequency non-coding variants in similar to ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.
  •  
5.
  • Flannick, Jason, et al. (författare)
  • Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
  • 2017
  • Ingår i: Scientific Data. - : Nature Publishing Group. - 2052-4463. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (> 80% of low-frequency coding variants in similar to 82 K Europeans via the exome chip, and similar to 90% of low-frequency non-coding variants in similar to 44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.
  •  
6.
  • Hivert, Marie-France, et al. (författare)
  • Lifestyle and metformin ameliorate insulin sensitivity independently of the genetic burden of established insulin resistance variants in Diabetes Prevention Program participants.
  • 2016
  • Ingår i: Diabetes. - : American Diabetes Association Inc.. - 1939-327X .- 0012-1797. ; 65:2, s. 520-526
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies of glycemic traits have identified genetics variants that are associated with insulin resistance (IR) in the general population. It is unknown if people with genetic enrichment for these IR-variants respond differently to interventions that aim to improve insulin sensitivity. We built a genetic risk score based on 17 established IR-variants and their effect sizes (weighted IR-GRS) in 2,713 participants of the Diabetes Prevention Program (DPP) with genetic consent. We tested associations between the weighted IR-GRS and insulin sensitivity index (ISI) at baseline in all participants, and with change in ISI over 1-year of follow-up in DPP intervention (metformin and lifestyle) and control (placebo) arms. All models were adjusted for age, sex, ethnicity, and waist circumference at baseline (plus baseline ISI for 1-year ISI change models). A higher IR-GRS was associated with lower baseline ISI (β= -0.754 [SE=0.229] log-ISI per unit; P=0.001 in fully adjusted models). There was no differential effect of treatment for the association between IR-GRS on change in ISI; higher IR-GRS was associated with attenuation in ISI improvement over 1 year (β= -0.520 [SE=0.233]; P=0.03 in fully adjusted models; all treatment arms). Lifestyle intervention and metformin improved ISI, regardless of the genetic burden of IR-variants.
  •  
7.
  • Pollin, Toni I., et al. (författare)
  • Genetic Modulation of Lipid Profiles following Lifestyle Modification or Metformin Treatment: The Diabetes Prevention Program
  • 2012
  • Ingår i: PLoS Genetics. - : Public Library of Science. - 1553-7404. ; 8:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Weight-loss interventions generally improve lipid profiles and reduce cardiovascular disease risk, but effects are variable and may depend on genetic factors. We performed a genetic association analysis of data from 2,993 participants in the Diabetes Prevention Program to test the hypotheses that a genetic risk score (GRS) based on deleterious alleles at 32 lipid-associated single-nucleotide polymorphisms modifies the effects of lifestyle and/or metformin interventions on lipid levels and nuclear magnetic resonance (NMR) lipoprotein subfraction size and number. Twenty-three loci previously associated with fasting LDL-C, HDL-C, or triglycerides replicated (P = 0.04-1x10(-17)). Except for total HDL particles (r = -0.03, P = 0.26), all components of the lipid profile correlated with the GRS (partial |r| = 0.07-0.17, P=5x10(-5)-1x10(-19)). The GRS was associated with higher baseline-adjusted 1-year LDL cholesterol levels (beta = +0.87, SEE +/- 0.22 mg/dl/allele, P=8x10(-5), P-interaction = 0.02) in the lifestyle intervention group, but not in the placebo (beta = +0.20, SEE +/- 0.22 mg/dl/allele, P = 0.35) or metformin (beta = -0.03, SEE +/- 0.22 mg/dl/allele, P = 0.90; P-interaction = 0.64) groups. Similarly, a higher GRS predicted a greater number of baseline-adjusted small LDL particles at 1 year in the lifestyle intervention arm (beta = +0.30, SEE +/- 0.012 ln nmol/L/allele, P = 0.01, P-interaction = 0.01) but not in the placebo (beta = 20.002, SEE +/- 0.008 ln nmol/L/allele, P = 0.74) or metformin (beta = +0.013, SEE +/- 0.008 nmol/L/allele, P = 0.12; P-interaction = 0.24) groups. Our findings suggest that a high genetic burden confers an adverse lipid profile and predicts attenuated response in LDL-C levels and small LDL particle number to dietary and physical activity interventions aimed at weight loss.
  •  
8.
  • Billings, Liana K., et al. (författare)
  • Variation in maturity-onset diabetes of the young genes influence response to interventions for diabetes prevention
  • 2017
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : Oxford University Press. - 0021-972X. ; 102:8, s. 2678-2689
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Variation in genes that cause maturity-onset diabetes of the young (MODY) has been associated with diabetes incidence and glycemic traits. Objectives: This study aimed to determine whether genetic variation in MODY genes leads to differential responses to insulin-sensitizing interventions. Design and Setting: This was a secondary analysis of a multicenter, randomized clinical trial, the Diabetes Prevention Program (DPP), involving 27 US academic institutions. We genotyped 22 missense and 221 common variants in the MODY-causing genes in the participants in the DPP. Participants and Interventions: The study included 2806 genotyped DPP participants randomized to receive intensive lifestyle intervention (n = 935), metformin (n = 927), or placebo (n = 944). Main Outcome Measures: Association of MODY genetic variants with diabetes incidence at a median of 3 years and measures of 1-year β-Cell function, insulinogenic index, and oral disposition index. Analyses were stratified by treatment group for significant single-nucleotide polymorphism 3 treatment interaction (Pint, 0.05). Sequence kernel association tests examined the association between an aggregate of rare missense variants and insulinogenic traits. Results: After 1 year, the minor allele of rs3212185 (HNF4A) was associated with improved β-Cell function in the metformin and lifestyle groups but not the placebo group; the minor allele of rs6719578 (NEUROD1) was associated with an increase in insulin secretion in the metformin group but not in the placebo and lifestyle groups. Conclusions: These results provide evidence that genetic variation among MODY genes may influence response to insulin-sensitizing interventions.
  •  
9.
  • Moore, Allan F, et al. (författare)
  • Extension of type 2 diabetes genome-wide association scan results in the diabetes prevention program
  • 2008
  • Ingår i: Diabetes. - Alexandria : American diabetes association. - 0012-1797 .- 1939-327X. ; 57:9, s. 2503-2510
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Genome-wide association scans (GWASs) have identified novel diabetes-associated genes. We evaluated how these variants impact diabetes incidence, quantitative glycemic traits, and response to preventive interventions in 3,548 subjects at high risk of type 2 diabetes enrolled in the Diabetes Prevention Program (DPP), which examined the effects of lifestyle intervention, metformin, and troglitazone versus placebo.RESEARCH DESIGN AND METHODS: We genotyped selected single nucleotide polymorphisms (SNPs) in or near diabetes-associated loci, including EXT2, CDKAL1, CDKN2A/B, IGF2BP2, HHEX, LOC387761, and SLC30A8 in DPP participants and performed Cox regression analyses using genotype, intervention, and their interactions as predictors of diabetes incidence. We evaluated their effect on insulin resistance and secretion at 1 year.RESULTS: None of the selected SNPs were associated with increased diabetes incidence in this population. After adjustments for ethnicity, baseline insulin secretion was lower in subjects with the risk genotype at HHEX rs1111875 (P = 0.01); there were no significant differences in baseline insulin sensitivity. Both at baseline and at 1 year, subjects with the risk genotype at LOC387761 had paradoxically increased insulin secretion; adjustment for self-reported ethnicity abolished these differences. In ethnicity-adjusted analyses, we noted a nominal differential improvement in beta-cell function for carriers of the protective genotype at CDKN2A/B after 1 year of troglitazone treatment (P = 0.01) and possibly lifestyle modification (P = 0.05).CONCLUSIONS: We were unable to replicate the GWAS findings regarding diabetes risk in the DPP. We did observe genotype associations with differences in baseline insulin secretion at the HHEX locus and a possible pharmacogenetic interaction at CDKNA2/B.
  •  
10.
  • Varga, Tibor V., et al. (författare)
  • Comprehensive Analysis of Established Dyslipidemia-Associated Loci in the Diabetes Prevention Program
  • 2016
  • Ingår i: Circulation. - : Lippincott Williams & Wilkins. - 1942-325X .- 1942-3268. ; 9:6, s. 495-503
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: We assessed whether 234 established dyslipidemia-associated loci modify the effects of metformin treatment and lifestyle intervention (versus placebo control) on lipid and lipid subfraction levels in the Diabetes Prevention Program randomized controlled trial. Methods and Results: We tested gene treatment interactions in relation to baseline-adjusted follow-up blood lipid concentrations (high-density lipoprotein [HDL] and low-density lipoprotein-cholesterol, total cholesterol, and triglycerides) and lipoprotein subfraction particle concentrations and size in 2993 participants with pre-diabetes. Of the previously reported single-nucleotide polymorphism associations, 32.5% replicated at P<0.05 with baseline lipid traits. Trait-specific genetic risk scores were robustly associated (3x10(-4)>P>1.1x10(-16)) with their respective baseline traits for all but 2 traits. Lifestyle modified the effect of the genetic risk score for large HDL particle numbers, such that each risk allele of the genetic risk scores was associated with lower concentrations of large HDL particles at follow-up in the lifestyle arm (beta=-0.11 mu mol/L per genetic risk scores risk allele; 95% confidence interval, -0.188 to -0.033; P=5x10(-3); P-interaction=1x10(-3) for lifestyle versus placebo), but not in the metformin or placebo arms (P>0.05). In the lifestyle arm, participants with high genetic risk had more favorable or similar trait levels at 1-year compared with participants at lower genetic risk at baseline for 17 of the 20 traits. Conclusions: Improvements in large HDL particle concentrations conferred by lifestyle may be diminished by genetic factors. Lifestyle intervention, however, was successful in offsetting unfavorable genetic loading for most lipid traits.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy