SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pomp Stephan 1968 ) ;pers:(Rakopoulos Vasileios)"

Sökning: WFRF:(Pomp Stephan 1968 ) > Rakopoulos Vasileios

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Al-Adili, Ali, et al. (författare)
  • Neutron-multiplicity experiments for enhanced fission modelling
  • 2017
  • Ingår i: EPJ Web of Conferences. - : EDP Sciences. - 9782759890200
  • Konferensbidrag (refereegranskat)abstract
    • The nuclear de-excitation process of fission fragments (FF) provides fundamental information for the understanding of nuclear fission and nuclear structure in neutron-rich isotopes. The variation of the prompt-neutron multiplicity, ν(A), as a function of the incident neutron energy (En) is one of many open questions. It leads to significantly different treatments in various fission models and implies that experimental data are analyzed based on contradicting assumptions. One critical question is whether the additional excitation energy (Eexc) is manifested through an increase of ν(A) for all fragments or for the heavy ones only. A systematic investigation of ν(A) as a function of En has been initiated. Correlations between prompt-fission neutrons and fission fragments are obtained by using liquid scintillators in conjunction with a Frisch-grid ionization chamber. The proof-of-principle has been achieved on the reaction 235U(nth,f) at the Van De Graff (VdG) accelerator of the JRC-Geel using a fully digital data acquisition system. Neutrons from 252Cf(sf) were measured separately to quantify the neutron-scattering component due to surrounding shielding material and to determine the intrinsic detector efficiency. Prelimenary results on ν(A) and spectrum in correlation with FF properties are presented.
  •  
2.
  • Al-Adili, Ali, et al. (författare)
  • Studying fission neutrons with 2E-2v and 2E
  • 2018
  • Ingår i: SCIENTIFIC WORKSHOP ON NUCLEAR FISSION DYNAMICS AND THE EMISSION OF PROMPT NEUTRONS AND GAMMA RAYS (THEORY-4). - : EDP Sciences. - 9782759890316
  • Konferensbidrag (refereegranskat)abstract
    • This work aims at measuring prompt-fission neutrons at different excitation energies of the nucleus. Two independent techniques, the 2E-2v and the 2E techniques, are used to map the characteristics of the mass-dependent prompt fission neutron multiplicity, 7(A), when the excitation energy is increased. The VERDI 2E-2v spectrometer is being developed at JRC-GEEL. The Fission Fragment (FF) energies are measured using two arrays of 16 silicon (Si) detectors each. The FFs velocities are obtained by time-of-flight, measured between micro-channel plates (MCP) and Si detectors. With MCPs placed on both sides of the fission source, VERDI allows for independent timing measurements for both fragments. Cf-252(sf) was measured and the present results revealed particular features of the 2E-2v technique. Dedicated simulations were also performed using the GEF code to study important aspects of the 2E-2v technique. Our simulations show that prompt neutron emission has a non-negligible impact on the deduced fragment data and affects also the shape of 17(A). Geometrical constraints lead to a total-kinetic energy-dependent detection efficiency. The 2E technique utilizes an ionization chamber together with two liquid scintillator detectors. Two measurements have been performed, one of Cf-252(sf) and another one of thermal-neutron induced fission in U-235(n,f). Results from Cf-252(sf) are reported here.
  •  
3.
  • Al-Adili, Ali, et al. (författare)
  • Prompt fission neutron yields in thermal fission of U-235 and spontaneous fission of Cf-252
  • 2020
  • Ingår i: Physical Review C. - : American Physical Society (APS). - 2469-9985 .- 2469-9993. ; 102:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The sharing of excitation energy between the fission fragments is one of the key issues in studying nuclear fission. One way to address this is by studying prompt-fission neutron multiplicities as a function of other fission observables such as the mass, (nu) over bar (A). These are vital benchmark data for both fission and nuclear deexcitation models, putting constrains on the fragment excitation energy and hence on the competing prompt neutron/gamma-ray emission. Despite numerous detailed studies, recent measurements done at JRC-Geel with the SCINTIA array in the epithermal region show surprisingly strong discrepancies to earlier thermal fission data and the Wahl systematics. Purpose: The purpose was to perform measurements of the prompt-fission neutron multiplicity, as a function of fragment mass and total kinetic energy (TKE), in U-235(n(th), f) and Cf-252(sf), to verify and extend the SCINTIA results. Another goal was to validate the analysis methods, and prepare for planned investigations at excitation energies up to 5.5 MeV. Methods: The experiments were conducted at the former 7 MV Van de Graaff facility in JRC-Geel, using a Twin Frisch-Grid Ionization Chamber and two liquid scintillation detectors. A neutron beam with an average energy of 0.5 MeV was produced via the Li-7(p,n) reaction. The neutrons were thermalized by a 12 cm thick block of paraffin. Digital data acquisition systems were utilized. Comprehensive simulations were performed to verify the methodology and to investigate the role of the mass and energy resolution on measured (nu) over bar (A) and (nu) over bar (TKE) values. The simulation results also revealed that the partial derivative(nu) over bar/partial derivative A and partial derivative(TKE) over bar/partial derivative(nu) over bar are affected by the mass and energy resolution. However, the effect is small for the estimated resolutions of this work. Detailed Fluka simulations were performed to calculate the fraction of thermal neutron-induced fission, which was estimated to be about 98%. Results: The experimental results on (nu) over bar (A) are in good agreement with earlier data for Cf-252(sf). For U-235(n(th), f), the (nu) over bar (A) data is very similar to the data obtained with SCINTIA, and therefore we verify these disclosed discrepancies to earlier thermal data and to the Wahl evaluation. The experimental results on (nu) over bar (TKE) are also in agreement with the data at epithermal energies. For Cf-252(sf) a slope value of partial derivative(TKE) over bar/partial derivative(nu) over bar = (-12.9 f 0.2) MeV/n was obtained. For U-235(n(th), f) the value is (-12.0 +/- 0.1) MeV/n. Finally, the neutron spectrum in the center-of-mass system was derived and plotted as a function of fragment mass. Conclusions: This work clearly proves the lack of accurate correlation between fission fragment and neutron data even in the best-studied reactions. The new results highlight the need of a new evaluation of the prompt-fission multiplicity for U-225(n(th), f).
  •  
4.
  • Gao, Zhihao, et al. (författare)
  • Benchmark of a multi-physics Monte Carlo simulation of an ionguide for neutron-induced fission products
  • 2022
  • Ingår i: European Physical Journal. - : Springer Nature. - 1286-0042 .- 1286-0050. ; 58:2
  • Tidskriftsartikel (refereegranskat)abstract
    • To enhance the production of medium-heavy,neutron-rich nuclei, and to facilitate measurements of independentyields of neutron-induced fission, a proton-toneutronconverter and a dedicated ion guide for neutroninducedfission have been developed for the IGISOL facilityat the University of Jyväskylä. The ion guide holds thefissionable targets, and the fission products emerging fromthe targets are collected in helium gas and transported to thedownstream experimental stations.Acomputer model, basedon a combination of MCNPX for modeling the neutron production,the fission code GEF, and GEANT4 for the transportof the fission products, was developed. The model willbe used to improve the setup with respect to the productionand collection of fission products. In this paper we benchmarkthe model by comparing simulations to a measurementin which fission products were implanted in foils located atdifferent positions in the ion guide. In addition, the productsfrom neutron activation in the titanium foil and the uraniumtargets are studied. The result suggests that the neutron fluxat the high-energy part of the neutron spectrum is overestimatedby approximately 40%.However, the transportation offission products in the uranium targets agrees with the experimentwithin 10%. Furthermore, the simulated transportationof fission products in the helium gas achieves almost perfectagreement with the measurement. Hence, we conclude thatthe model, after correction for the neutron flux, is well suitedfor optimization studies of future ion guide designs.
  •  
5.
  • Gao, Zhihao, et al. (författare)
  • Fission studies at IGISOL/JYFLTRAP : Simulations of the ion guide for neutron-induced fission and comparison with experimental data
  • 2020
  • Ingår i: ND 2019. - : EDP Sciences. - 9782759891061
  • Konferensbidrag (refereegranskat)abstract
    • For the production of exotic nuclei at the IGISOL facility, an ion guide for neutron-induced fission has been developed and tested in experiments. Fission fragments are produced inside the ion guide and collected using a helium buffer gas. Meanwhile, a GEANT4 model has been developed to simulate the transportation and stopping of the charged fission products. In a recent measurement of neutron-induced fission yields, implantation foils were located at different positions in the ion guide. The gamma spectra from these foils and the fission targets are compared to the results from the GEANT4 simulation.In order to allow fission yield measurements in the low yield regions, towards the tails and in the symmetric part of the mass distribution, the stopping and extraction efficiency of the ion guide has to be significantly improved. This objective can be achieved by increasing the size while introducing electric field guidance using a combination of static electrodes and an RF-carpet. To this end, the GEANT4 model is used to optimise the design of such an ion guide.
  •  
6.
  • Mattera, Andrea, 1985-, et al. (författare)
  • Production of Sn and Sb isotopes in high-energy neutron induced fission of natU
  • 2018
  • Ingår i: European Physical Journal A. - : Springer Science and Business Media LLC. - 1434-6001 .- 1434-601X. ; 54
  • Tidskriftsartikel (refereegranskat)abstract
    • The first systematic measurement of neutron-induced fission yields has been performed at the upgraded IGISOL-4 facility at the University of Jyvaskyla, Finland. The fission products from high-energy neutron-induced fission of U-nat were stopped in a gas cell filled with helium buffer gas, and were online separated with a dipole magnet. The isobars, with masses in the range A = 128-133, were transported to a tape-implantation station and identified using gamma-spectroscopy. We report here the relative cumulative isotopic yields of tin (Z = 50) and the relative independent isotopic yields of antimony (Z = 51). Isomeric yield ratios were also obtained for five nuclides. The yields of tin show a staggered behaviour around A = 131, not observed in the ENDF/B-VII. 1 evaluation. The yields of antimony also contradict the trend from the evaluation, but are in agreement with a calculation performed using the GEF model that shows the yield increasing with mass in the range A = 128-133.
  •  
7.
  •  
8.
  •  
9.
  • Pomp, Stephan, 1968-, et al. (författare)
  • Measurement of fission yields and isomeric yield ratios at IGISOL
  • 2018
  • Ingår i: Scientific Workshop on Nuclear Fission Dynamics And The Emission of Prompt Neutrons and Gamma Rays (Theory-4). - : EDP Sciences. - 9782759890316
  • Konferensbidrag (refereegranskat)abstract
    • Data on fission yields and isomeric yield ratios (IYR) are tools to study the fission process, in particular the generation of angular momentum. We use the IGISOL facility with the Penning trap JYFLTRAP in Jyvaskyla, Finland, for such measurements on Th-232 and U-nat targets. Previously published fission yield data from IGISOL concern the Th-232(p,f) and U-238(p,f) reactions at 25 and 50 MeV. Recently, a neutron source, using the Be(p,n) reaction, has been developed, installed and tested. We summarize the results for (p,f) focusing on the first measurement of IYR by direct ion counting. We also present first results for IYR and relative yields for Sn and Sb isotopes in the 128-133 mass range from U-nat(n,f) based on gamma-spectrometry. We find a staggering behaviour in the cumulative yields for Sn and a shift in the independent fission yields for Sb as compared to current evaluations. Plans for the future experimental program on fission yields and IYR measurements are discussed.
  •  
10.
  • Rakopoulos, Vasileios, et al. (författare)
  • First isomeric yield ratio measurements by direct ion counting and implications for the angular momentum of the primary fission fragments
  • 2018
  • Ingår i: Physical Review C. - : AMER PHYSICAL SOC. - 2469-9985 .- 2469-9993. ; 98:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first experimental determination of independent isomeric yield ratios using direct ion counting with a Penning trap, which offered such a high resolution in mass that isomeric states could be separated. The measurements were performed at the Ion Guide Isotope Separator On-Line (IGISOL) facility at the University of Jyvaskyla. The isomer production ratios of Ge-81, Y-96,Y-97 Sn-128(,1)30, and Sb-129 in the 25-MeV proton-induced fission of U-na(t) and Th-232 were studied. Three isomeric pairs (Ge-81, Y-96, and Sb-129) were measured for the first time for the U-na(t)(p, f) reaction, while all the reported yield ratios for the Th-232(p, f) reaction were determined for the first time. The comparison of the experimentally determined isomeric yield ratios with data available in the literature shows a reasonable agreement, except for the case of Sn-130 for unspecified reasons. The obtained results were also compared with the GEF model, where good agreement can be noticed in most cases for both reactions. Serious discrepancies can only be observed for the cases of Y-96(,)97 for both reactions. Moreover, based on the isomeric yield ratios, the root-mean-square angular momenta (J(r)(ms)) of the fission fragments after scission were estimated using the TALYS code. The experimentally determined isomeric yield ratios, and consequently the deduced J(rms), for Sn-130 are significantly lower compared to Sn-128 for both fissioning systems. This can be attributed to the more spherical shape of the fragments that contribute to the formation of Sn-130, due to their proximity to the N = 82 shell closure. The values of J(rms) for Sb-129 are higher than Sn-128 for both reactions, despite the same neutron number of both nuclides (N = 78), indicating the odd-Z effect where fission fragments with odd-Z number tend to bear larger angular momentum than even-Z fragments. The isomer production ratio for the isotopes of Sn is more enhanced in the U-na(t)(p, f) reaction than in Th-232(p, f). The opposite is observed for Y-96 and Y-97. These discrepancies might be associated to different scission shapes of the fragments for the two fission reactions, indicating the impact that the different fission modes can have on the isomeric yield ratios.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy