SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Popescu B) ;mspu:(researchreview)"

Sökning: WFRF:(Popescu B) > Forskningsöversikt

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aamodt, K., et al. (författare)
  • The ALICE experiment at the CERN LHC
  • 2008
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 3:S08002
  • Forskningsöversikt (refereegranskat)abstract
    • ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries, Its overall dimensions are 16 x 16 x 26 m(3) with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.
  •  
2.
  • Wallin, Anders, 1950, et al. (författare)
  • Biochemical markers in vascular cognitive impairment associated with subcortical small vessel disease - A consensus report.
  • 2017
  • Ingår i: BMC neurology. - : Springer Science and Business Media LLC. - 1471-2377. ; 17:1
  • Forskningsöversikt (refereegranskat)abstract
    • Vascular cognitive impairment (VCI) is a heterogeneous entity with multiple aetiologies, all linked to underlying vascular disease. Among these, VCI related to subcortical small vessel disease (SSVD) is emerging as a major homogeneous subtype. Its progressive course raises the need for biomarker identification and/or development for adequate therapeutic interventions to be tested. In order to shed light in the current status on biochemical markers for VCI-SSVD, experts in field reviewed the recent evidence and literature data.The group conducted a comprehensive search on Medline, PubMed and Embase databases for studies published until 15.01.2017. The proposal on current status of biochemical markers in VCI-SSVD was reviewed by all co-authors and the draft was repeatedly circulated and discussed before it was finalized.This review identifies a large number of biochemical markers derived from CSF and blood. There is a considerable overlap of VCI-SSVD clinical symptoms with those of Alzheimer's disease (AD). Although most of the published studies are small and their findings remain to be replicated in larger cohorts, several biomarkers have shown promise in separating VCI-SSVD from AD. These promising biomarkers are closely linked to underlying SSVD pathophysiology, namely disruption of blood-CSF and blood-brain barriers (BCB-BBB) and breakdown of white matter myelinated fibres and extracellular matrix, as well as blood and brain inflammation. The leading biomarker candidates are: elevated CSF/blood albumin ratio, which reflects BCB/BBB disruption; altered CSF matrix metalloproteinases, reflecting extracellular matrix breakdown; CSF neurofilment as a marker of axonal damage, and possibly blood inflammatory cytokines and adhesion molecules. The suggested SSVD biomarker deviations contrasts the characteristic CSF profile in AD, i.e. depletion of amyloid beta peptide and increased phosphorylated and total tau.Combining SSVD and AD biomarkers may provide a powerful tool to identify with greater precision appropriate patients for clinical trials of more homogeneous dementia populations. Thereby, biomarkers might promote therapeutic progress not only in VCI-SSVD, but also in AD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy