SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Popp J) ;mspu:(researchreview)"

Sökning: WFRF:(Popp J) > Forskningsöversikt

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Langer, Judith, et al. (författare)
  • Present and Future of Surface-Enhanced Raman Scattering
  • 2020
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-086X .- 1936-0851. ; 14:1, s. 28-117
  • Forskningsöversikt (refereegranskat)abstract
    • The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article. ©
  •  
2.
  • Calvin, Katherine, et al. (författare)
  • Bioenergy for climate change mitigation: Scale and sustainability
  • 2021
  • Ingår i: GCB Bioenergy. - : Wiley. - 1757-1707 .- 1757-1693. ; 13:9, s. 1346-1371
  • Forskningsöversikt (refereegranskat)abstract
    • Many global climate change mitigation pathways presented in IPCC assessment reports rely heavily on the deployment of bioenergy, often used in conjunction with carbon capture and storage. We review the literature on bioenergy use for climate change mitigation, including studies that use top-down integrated assessment models or bottom-up modelling, and studies that do not rely on modelling. We summarize the state of knowledge concerning potential co-benefits and adverse side effects of bioenergy systems and discuss limitations of modelling studies used to analyse consequences of bioenergy expansion. The implications of bioenergy supply on mitigation and other sustainability criteria are context dependent and influenced by feedstock, management regime, climatic region, scale of deployment and how bioenergy alters energy systems and land use. Depending on previous land use, widespread deployment of monoculture plantations may contribute to mitigation but can cause negative impacts across a range of other sustainability criteria. Strategic integration of new biomass supply systems into existing agriculture and forest landscapes may result in less mitigation but can contribute positively to other sustainability objectives. There is considerable variation in evaluations of how sustainability challenges evolve as the scale of bioenergy deployment increases, due to limitations of existing models, and uncertainty over the future context with respect to the many variables that influence alternative uses of biomass and land. Integrative policies, coordinated institutions and improved governance mechanisms to enhance co-benefits and minimize adverse side effects can reduce the risks of large-scale deployment of bioenergy. Further, conservation and efficiency measures for energy, land and biomass can support greater flexibility in achieving climate change mitigation and adaptation.
  •  
3.
  • Creutzig, F., et al. (författare)
  • Bioenergy and climate change mitigation: an assessment
  • 2015
  • Ingår i: GCB Bioenergy. - : Wiley. - 1757-1707 .- 1757-1693. ; 7:5, s. 916-944
  • Forskningsöversikt (refereegranskat)abstract
    • Bioenergy deployment offers significant potential for climate change mitigation, but also carries considerable risks. In this review, we bring together perspectives of various communities involved in the research and regulation of bioenergy deployment in the context of climate change mitigation: Land-use and energy experts, land-use and integrated assessment modelers, human geographers, ecosystem researchers, climate scientists and two different strands of life-cycle assessment experts. We summarize technological options, outline the state-of-the-art knowledge on various climate effects, provide an update on estimates of technical resource potential and comprehensively identify sustainability effects. Cellulosic feedstocks, increased end-use efficiency, improved land carbon-stock management and residue use, and, when fully developed, BECCS appear as the most promising options, depending on development costs, implementation, learning, and risk management. Combined heat and power, efficient biomass cookstoves and small-scale power generation for rural areas can help to promote energy access and sustainable development, along with reduced emissions. We estimate the sustainable technical potential as up to 100EJ: high agreement; 100-300EJ: medium agreement; above 300EJ: low agreement. Stabilization scenarios indicate that bioenergy may supply from 10 to 245EJyr(-1) to global primary energy supply by 2050. Models indicate that, if technological and governance preconditions are met, large-scale deployment (>200EJ), together with BECCS, could help to keep global warming below 2 degrees degrees of preindustrial levels; but such high deployment of land-intensive bioenergy feedstocks could also lead to detrimental climate effects, negatively impact ecosystems, biodiversity and livelihoods. The integration of bioenergy systems into agriculture and forest landscapes can improve land and water use efficiency and help address concerns about environmental impacts. We conclude that the high variability in pathways, uncertainties in technological development and ambiguity in political decision render forecasts on deployment levels and climate effects very difficult. However, uncertainty about projections should not preclude pursuing beneficial bioenergy options.
  •  
4.
  • Smith, P., et al. (författare)
  • How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?
  • 2013
  • Ingår i: Global Change Biology. - : Wiley. - 1365-2486 .- 1354-1013. ; 19:8, s. 2285-2302
  • Forskningsöversikt (refereegranskat)abstract
    • Feeding 9-10billion people by 2050 and preventing dangerous climate change are two of the greatest challenges facing humanity. Both challenges must be met while reducing the impact of land management on ecosystem services that deliver vital goods and services, and support human health and well-being. Few studies to date have considered the interactions between these challenges. In this study we briefly outline the challenges, review the supply- and demand-side climate mitigation potential available in the Agriculture, Forestry and Other Land Use AFOLU sector and options for delivering food security. We briefly outline some of the synergies and trade-offs afforded by mitigation practices, before presenting an assessment of the mitigation potential possible in the AFOLU sector under possible future scenarios in which demand-side measures codeliver to aid food security. We conclude that while supply-side mitigation measures, such as changes in land management, might either enhance or negatively impact food security, demand-side mitigation measures, such as reduced waste or demand for livestock products, should benefit both food security and greenhouse gas (GHG) mitigation. Demand-side measures offer a greater potential (1.5-15.6Gt CO2-eq. yr(-1)) in meeting both challenges than do supply-side measures (1.5-4.3Gt CO2-eq. yr(-1) at carbon prices between 20 and 100US$ tCO(2)-eq. yr(-1)), but given the enormity of challenges, all options need to be considered. Supply-side measures should be implemented immediately, focussing on those that allow the production of more agricultural product per unit of input. For demand-side measures, given the difficulties in their implementation and lag in their effectiveness, policy should be introduced quickly, and should aim to codeliver to other policy agenda, such as improving environmental quality or improving dietary health. These problems facing humanity in the 21st Century are extremely challenging, and policy that addresses multiple objectives is required now more than ever.
  •  
5.
  • Walker, Mike, et al. (författare)
  • Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records
  • 2009
  • Ingår i: Journal of Quaternary Science. - : Wiley. - 1099-1417 .- 0267-8179. ; 24:1, s. 3-17
  • Forskningsöversikt (refereegranskat)abstract
    • The Greenland ice core from NorthGRIP (NGRIP) contains a proxy climate record across the Pleistocene-Holocene boundary of unprecedented clarity and resolution. Analysis of an array of physical and chemical parameters within the ice enables the base of the Holocene, as reflected in the first signs of climatic warming at the end of the Younger Dryas/Greenland Stadial 1 cold phase, to be located with a high degree of precision. This climatic event is most clearly reflected in an abrupt shift in deuterium excess values, accompanied by more gradual changes in delta O-18, dust concentration, a range of chemical species, and annual layer thickness. A timescale based on multi-parameter annual layer counting provides an age of 11 700 calendar yr b2k (before AD 2000) for the base of the Holocene, with a maximum counting error of 99 yr. A proposal that an archived core from this unique sequence should constitute the Global Stratotype Section and Point (GSSP) for the base of the Holocene Series/Epoch (Quaternary System/Period) has been ratified by the International Union of Geological Sciences. Five auxiliary stratotypes for the Pleistocene-Holocene boundary have also been recognised. Copyright (C) 2008 John Wiley & Sons, Ltd.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy