SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Prentice R) ;pers:(Gal Yam A.)"

Sökning: WFRF:(Prentice R) > Gal Yam A.

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Miller, A. A., et al. (författare)
  • The Spectacular Ultraviolet Flash from the Peculiar Type Ia Supernova 2019yvq
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 898:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Early observations of Type Ia supernovae (SNe Ia) provide essential clues for understanding the progenitor system that gave rise to the terminal thermonuclear explosion. We present exquisite observations of SN 2019yvq, the second observed SN Ia, after iPTF 14atg, to display an early flash of emission in the ultraviolet (UV) and optical. Our analysis finds that SN 2019yvq was unusual, even when ignoring the initial flash, in that it was moderately underluminous for an SN Ia ( mag at peak) yet featured very high absorption velocities ( km s−1 for Si ii λ6355 at peak). We find that many of the observational features of SN 2019yvq, aside from the flash, can be explained if the explosive yield of radioactive 56Ni is relatively low (we measure ) and it and other iron-group elements are concentrated in the innermost layers of the ejecta. To explain both the UV/optical flash and peak properties of SN 2019yvq we consider four different models: interaction between the SN ejecta and a nondegenerate companion, extended clumps of 56Ni in the outer ejecta, a double-detonation explosion, and the violent merger of two white dwarfs. Each of these models has shortcomings when compared to the observations; it is clear additional tuning is required to better match SN 2019yvq. In closing, we predict that the nebular spectra of SN 2019yvq will feature either H or He emission, if the ejecta collided with a companion, strong [Ca ii] emission, if it was a double detonation, or narrow [O i] emission, if it was due to a violent merger.
  •  
2.
  • Smartt, S. J., et al. (författare)
  • A kilonova as the electromagnetic counterpart to a gravitational-wave source
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 551:7678, s. 75-
  • Tidskriftsartikel (refereegranskat)abstract
    • Gravitational waves were discovered with the detection of binary black-hole mergers(1) and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova(2-5). The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate(6). Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short.-ray burst(7,8). The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 +/- 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 +/- 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 +/- 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.
  •  
3.
  • Anderson, J. P., et al. (författare)
  • A nearby super-luminous supernova with a long pre-maximum plateau and strong C (II) features
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 620
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Super-luminous supernovae (SLSNe) are rare events defined as being significantly more luminous than normal terminal stellar explosions. The source of the additional power needed to achieve such luminosities is still unclear. Discoveries in the local Universe (i.e. z < 0.1) are scarce, but afford dense multi-wavelength observations. Additional low-redshift objects are therefore extremely valuable.Aims. We present early-time observations of the type I SLSN ASASSN-18km/SN 2018bsz. These data are used to characterise the event and compare to literature SLSNe and spectral models. Host galaxy properties are also analysed.Methods. Optical and near-IR photometry and spectroscopy were analysed. Early-time ATLAS photometry was used to constrain the rising light curve. We identified a number of spectral features in optical-wavelength spectra and track their time evolution. Finally, we used archival host galaxy photometry together with H( II )region spectra to constrain the host environment.Results. ASASSN-18km/SN 2018bsz is found to be a type I SLSN in a galaxy at a redshift of 0.0267 (111 Mpc), making it the lowest-redshift event discovered to date. Strong C- II lines are identified in the spectra. Spectral models produced by exploding a Wolf-Rayet progenitor and injecting a magnetar power source are shown to be qualitatively similar to ASASSN-18km/SN 2018bsz, contrary to most SLSNe-I that display weak or non-existent C (II) lines. ASASSN-18km/SN 2018bsz displays along, slowly rising, red plateau of >26 days, before a steeper, faster rise to maximum. The host has an absolute magnitude of -19.8 mag (r), a mass of M-* = 1.5(-0.33)(+0.08) x 10(9) M-circle dot, and a star formation rate of =0.50(-0.19)(+2.22) M-circle dot yr(-1). A nearby H (II) region has an oxygen abundance (O3N2) of 8.31 +/- 0.01 dex.
  •  
4.
  • Chen, T.-W., et al. (författare)
  • SN 2017ens : The Metamorphosis of a Luminous Broadlined Type Ic Supernova into an SN IIn
  • 2018
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 867:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations of supernova (SN) 2017ens, discovered by the ATLAS survey and identified as a hot blue object through the GREAT program. The redshift z = 0.1086 implies a peak brightness of M-g = -21.1 mag, placing the object within the regime of superluminous supernovae. We observe a dramatic spectral evolution, from initially being blue and featureless, to later developing features similar to those of the broadlined Type Ic SN 1998bw, and finally showing 2000 km s(-1) wide H alpha and H beta emission. Relatively narrow Balmer emission (reminiscent of a SN IIn) is present at all times. We also detect coronal lines, indicative of a dense circumstellar medium. We constrain the progenitor wind velocity to similar to 50-60 km s(-1) based on P-Cygni profiles, which is far slower than those present in Wolf-Rayet stars. This may suggest that the progenitor passed through a luminous blue variable phase, or that the wind is instead from a binary companion red supergiant star. At late times we see the similar to 2000 km s(-1) wide H alpha emission persisting at high luminosity (similar to 3 x 10(40) erg s(-1)) for at least 100 day, perhaps indicative of additional mass loss at high velocities that could have been ejected by a pulsational pair instability.
  •  
5.
  • Leloudas, G., et al. (författare)
  • The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole
  • 2016
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 1:1
  • Tidskriftsartikel (refereegranskat)abstract
    • When a star passes within the tidal radius of a supermassive black hole, it will be torn apart1. For a star with the mass of the Sun (M-circle dot) and a non-spinning black hole with a mass <10(8)M(circle dot), the tidal radius lies outside the black hole event horizon2 and the disruption results in a luminous flare(3-6). Here we report observations over a period of ten months of a transient, hitherto interpreted(7) as a superluminous supernova(8). Our data show that the transient rebrightened substantially in the ultraviolet and that the spectrum went through three different spectroscopic phases without ever becoming nebular. Our observations are more consistent with a tidal disruption event than a superluminous supernova because of the temperature evolution(6), the presence of highly ionized CNO gas in the line of sight(9) and our improved localization of the transient in the nucleus of a passive galaxy, where the presence of massive stars is highly unlikely(10,11). While the supermassive black hole has a mass >10(8)M(circle dot)(12,13), a star with the same mass as the Sun could be disrupted outside the event horizon if the black hole were spinning rapidly(14). The rapid spin and high black hole mass can explain the high luminosity of this event.
  •  
6.
  • Tartaglia, L., et al. (författare)
  • The Early Detection and Follow-up of the Highly Obscured Type II Supernova 2016ija/DLT16am
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 853:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present our analysis of the Type II supernova DLT16am (SN 2016ija). The object was discovered during the ongoing D < 40 Mpc (DLT40) one-day cadence supernova search at r similar to 20.1 mag in the edge-on nearby (D = 20.0 +/- 4.0 Mpc) galaxy NGC 1532. The subsequent prompt and high-cadenced spectroscopic and photometric follow-up revealed a highly extinguished transient, with E(B - V) = 1.95 +/- 0.15 mag, consistent with a standard extinction law with R-V = 3.1 and a bright (M-V = -18.48 +/- 0.77 mag) absolute peak magnitude. A comparison of the photometric features with those of large samples of SNe II reveals a fast rise for the derived luminosity and a relatively short plateau phase, with a slope of S-50V = 0.84 +/- 0.04 mag/50 days, consistent with the photometric properties typical of those of fast-declining SNe II. Despite the large uncertainties on the distance and the extinction in the direction of DLT16am, the measured photospheric expansion velocity and the derived absolute V-band magnitude at similar to 50 days after the explosion match the existing luminosity-velocity relation for SNe II.
  •  
7.
  • Andrews, Jennifer E., et al. (författare)
  • SN 2017gmr : An Energetic Type II-P Supernova with Asymmetries
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 885:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high-cadence UV, optical, and near-infrared data on the luminous Type II-P supernova SN;2017gmr from hours after discovery through the first 180 days. SN;2017gmr does not show signs of narrow, high-ionization emission lines in the early optical spectra, yet the optical light-curve evolution suggests that an extra energy source from circumstellar medium (CSM) interaction must be present for at least 2 days after explosion. Modeling of the early light curve indicates a ?500 R progenitor radius, consistent with a rather compact red supergiant, and late-time luminosities indicate that up to 0.130;;0.026 M of Ni-56 are present, if the light curve is solely powered by radioactive decay, although the Ni-56 mass may be lower if CSM interaction contributes to the post-plateau luminosity. Prominent multipeaked emission lines of H? and [O i] emerge after day 154, as a result of either an asymmetric explosion or asymmetries in the CSM. The lack of narrow lines within the first 2 days of explosion in the likely presence of CSM interaction may be an example of close, dense, asymmetric CSM that is quickly enveloped by the spherical supernova ejecta.
  •  
8.
  • Cai, Y.-Z., et al. (författare)
  • Intermediate-luminosity red transients : Spectrophotometric properties and connection to electron-capture supernova explosions
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 654
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the spectroscopic and photometric study of five intermediate-luminosity red transients (ILRTs), namely AT 2010dn, AT 2012jc, AT 2013la, AT 2013lb, and AT 2018aes. They share common observational properties and belong to a family of objects similar to the prototypical ILRT SN 2008S. These events have a rise time that is less than 15 days and absolute peak magnitudes of between −11.5 and −14.5 mag. Their pseudo-bolometric light curves peak in the range 0.5–9.0 × 1040 erg s−1 and their total radiated energies are on the order of (0.3–3) × 1047 erg. After maximum brightness, the light curves show a monotonic decline or a plateau, resembling those of faint supernovae IIL or IIP, respectively. At late phases, the light curves flatten, roughly following the slope of the 56Co decay. If the late-time power source is indeed radioactive decay, these transients produce 56Ni masses on the order of 10−4 to 10−3 M⊙. The spectral energy distribution of our ILRT sample, extending from the optical to the mid-infrared (MIR) domain, reveals a clear IR excess soon after explosion and non-negligible MIR emission at very late phases. The spectra show prominent H lines in emission with a typical velocity of a few hundred km s−1, along with Ca II features. In particular, the [Ca II] λ7291,7324 doublet is visible at all times, which is a characteristic feature for this family of transients. The identified progenitor of SN 2008S, which is luminous in archival Spitzer MIR images, suggests an intermediate-mass precursor star embedded in a dusty cocoon. We propose the explosion of a super-asymptotic giant branch star forming an electron-capture supernova as a plausible explanation for these events.
  •  
9.
  • De Cia, Annalisa, et al. (författare)
  • Light Curves of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 860:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the light-curve properties of a sample of 26 spectroscopically confirmed hydrogen- poor superluminous supernovae (SLSNe-I) in the Palomar Transient Factory survey. These events are brighter than SNe Ib/c and SNe Ic-BL, on average, by about 4 and 2. mag, respectively. The peak absolute magnitudes of SLSNe-I in rest-frame g band span -22 less than or similar to M-g less than or similar to -20 mag, and these peaks are not powered by radioactive Ni-56, unless strong asymmetries are at play. The rise timescales are longer for SLSNe than for normal SNe Ib/c, by roughly 10 days, for events with similar decay times. Thus, SLSNe-I can be considered as a separate population based on photometric properties. After peak, SLSNe-I decay with a wide range of slopes, with no obvious gap between rapidly declining and slowly declining events. The latter events show more irregularities (bumps) in the light curves at all times. At late times, the SLSN-I light curves slow down and cluster around the 56Co radioactive decay rate. Powering the late-time light curves with radioactive decay would require between 1 and 10M(circle dot) of Ni masses. Alternatively, a simple magnetar model can reasonably fit the majority of SLSNe-I light curves, with four exceptions, and can mimic the radioactive decay of 56Co, up to similar to 400 days from explosion. The resulting spin values do not correlate with the host-galaxy metallicities. Finally, the analysis of our sample cannot strengthen the case for using SLSNe-I for cosmology.
  •  
10.
  • Irani, I., et al. (författare)
  • Less Than 1% of Core-collapse Supernovae in the Local Universe Occur in Elliptical Galaxies
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 927:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations of three core-collapse supernovae (CCSNe) in elliptical hosts, detected by the Zwicky Transient Facility Bright Transient Survey (BTS). SN 2019ape is a SN Ic that exploded in the main body of a typical elliptical galaxy. Its properties are consistent with an explosion of a regular SN Ic progenitor. A secondary g-band light-curve peak could indicate interaction of the ejecta with circumstellar material (CSM). An Ha-emitting source at the explosion site suggests a residual local star formation origin. SN 2018fsh and SN 2020uik are SNe II which exploded in the outskirts of elliptical galaxies. SN 2020uik shows typical spectra for SNe II, while SN 2018fsh shows a boxy nebular Ha profile, a signature of CSM interaction. We combine these 3 SNe with 7 events from the literature and analyze their hosts as a sample. We present multi-wavelength photometry of the hosts, and compare this to archival photometry of all BTS hosts. Using the spectroscopically complete BTS, we conclude that 0.3%(+0.3)(-0.1) of all CCSNe occur in elliptical galaxies. We derive star formation rates and stellar masses for the host galaxies and compare them to the properties of other SN hosts. We show that CCSNe in ellipticals have larger physical separations from their hosts compared to SNe Ia in elliptical galaxies, and discuss implications for star-forming activity in elliptical galaxies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy