SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pugh E) ;lar1:(gu)"

Search: WFRF:(Pugh E) > University of Gothenburg

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Appeltans, W., et al. (author)
  • The Magnitude of Global Marine Species Diversity
  • 2012
  • In: Current Biology. - : Elsevier BV. - 0960-9822 .- 1879-0445. ; 22:23, s. 2189-2202
  • Journal article (peer-reviewed)abstract
    • Background: The question of how many marine species exist is important because it provides a metric for how much we do and do not know about life in the oceans. We have compiled the first register of the marine species of the world and used this baseline to estimate how many more species, partitioned among all major eukaryotic groups, may be discovered. Results: There are similar to 226,000 eukaryotic marine species described. More species were described in the past decade (similar to 20,000) than in any previous one. The number of authors describing new species has been increasing at a faster rate than the number of new species described in the past six decades. We report that there are similar to 170,000 synonyms, that 58,000-72,000 species are collected but not yet described, and that 482,000-741,000 more species have yet to be sampled. Molecular methods may add tens of thousands of cryptic species. Thus, there may be 0.7-1.0 million marine species. Past rates of description of new species indicate there may be 0.5 +/- 0.2 million marine species. On average 37% (median 31%) of species in over 100 recent field studies around the world might be new to science. Conclusions: Currently, between one-third and two-thirds of marine species may be undescribed, and previous estimates of there being well over one million marine species appear highly unlikely. More species than ever before are being described annually by an increasing number of authors. If the current trend continues, most species will be discovered this century.
  •  
2.
  • Furukawa, T. A., et al. (author)
  • Dismantling, optimising, and personalising internet cognitive behavioural therapy for depression: a systematic review and component network meta-analysis using individual data
  • 2021
  • In: Lancet Psychiatry. - : Elsevier BV. - 2215-0374 .- 2215-0366. ; 8:6, s. 500-511
  • Journal article (peer-reviewed)abstract
    • Findings We identified 76 RCTs, including 48 trials contributing individual participant data (11 704 participants) and 28 trials with aggregate data (6474 participants). The participants' weighted mean age was 42.0 years and 12 406 (71%) of 17 521 reported were women. There was suggestive evidence that behavioural activation might be beneficial (iMD -1.83 [95% credible interval (CrI) -2.90 to -0.80]) and that relaxation might be harmful (1.20 [95% CrI 0.17 to 2.27]). Baseline severity emerged as the strongest prognostic factor for endpoint depression. Combining human and automated encouragement reduced dropouts from treatment (incremental odds ratio, 0.32 [95% CrI 0.13 to 0.93]). The risk of bias was low for the randomisation process, missing outcome data, or selection of reported results in most of the included studies, uncertain for deviation from intended interventions, and high for measurement of outcomes. There was moderate to high heterogeneity among the studies and their components. 511
  •  
3.
  • Das, A., et al. (author)
  • Genomic predictors of response to PD-1 inhibition in children with germline DNA replication repair deficiency
  • 2022
  • In: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 28:1, s. 125-135
  • Journal article (peer-reviewed)abstract
    • Cancers arising from germline DNA mismatch repair deficiency or polymerase proofreading deficiency (MMRD and PPD) in children harbour the highest mutational and microsatellite insertion–deletion (MS-indel) burden in humans. MMRD and PPD cancers are commonly lethal due to the inherent resistance to chemo-irradiation. Although immune checkpoint inhibitors (ICIs) have failed to benefit children in previous studies, we hypothesized that hypermutation caused by MMRD and PPD will improve outcomes following ICI treatment in these patients. Using an international consortium registry study, we report on the ICI treatment of 45 progressive or recurrent tumors from 38 patients. Durable objective responses were observed in most patients, culminating in a 3 year survival of 41.4%. High mutation burden predicted response for ultra-hypermutant cancers (>100 mutations per Mb) enriched for combined MMRD + PPD, while MS-indels predicted response in MMRD tumors with lower mutation burden (10–100 mutations per Mb). Furthermore, both mechanisms were associated with increased immune infiltration even in ‘immunologically cold’ tumors such as gliomas, contributing to the favorable response. Pseudo-progression (flare) was common and was associated with immune activation in the tumor microenvironment and systemically. Furthermore, patients with flare who continued ICI treatment achieved durable responses. This study demonstrates improved survival for patients with tumors not previously known to respond to ICI treatment, including central nervous system and synchronous cancers, and identifies the dual roles of mutation burden and MS-indels in predicting sustained response to immunotherapy. © 2022, The Author(s).
  •  
4.
  • Das, Anirban, et al. (author)
  • Combined immunotherapy improves outcome for replication repair deficient (RRD) high-grade glioma failing anti-PD1 monotherapy: A report from the International RRD Consortium.
  • 2024
  • In: Cancer discovery. - 2159-8290. ; 14:2, s. 258 - 273
  • Journal article (peer-reviewed)abstract
    • Immune-checkpoint inhibition (ICI) is effective for replication-repair deficient, high-grade gliomas (RRD-HGG). Clinical/biologic impact of immune-directed approaches after failing ICI-monotherapy are unknown. We performed an international study on 75 patients treated with anti-PD1; 20 are progression-free (median follow-up: 3.7-years). After 2nd-progression/recurrence (n=55), continuing ICI-based salvage prolonged survival to 11.6-months (n=38; p<0.001), particularly for those with extreme mutation burden (p=0.03). Delayed, sustained responses were observed, associated with changes in mutational spectra and immune-microenvironment. Response to re-irradiation was explained by an absence of deleterious post-radiation indel signatures (ID8). Increased CTLA4-expression over time, and subsequent CTLA4-inhibition resulted in response/stable disease in 75%. RAS-MAPK-pathway inhibition led to reinvigoration of peripheral immune and radiological responses. Local (flare) and systemic immune adverse events were frequent (biallelic mismatch-repair deficiency > Lynch syndrome). We provide mechanistic rationale for the sustained benefit in RRD-HGG from immune-directed/ synergistic salvage therapies. Future approaches need to be tailored to patient and tumor biology.
  •  
5.
  • Martins, Inês S., et al. (author)
  • Widespread shifts in body size within populations and assemblages
  • 2023
  • In: Science. - 0036-8075 .- 1095-9203. ; 381:6662, s. 1067-1071
  • Journal article (peer-reviewed)abstract
    • Biotic responses to global change include directional shifts in organismal traits. Body size, an integrative trait that determines demographic rates and ecosystem functions, is thought to be shrinking in the Anthropocene. Here, we assessed the prevalence of body size change in six taxon groups across 5025 assemblage time series spanning 1960 to 2020. Using the Price equation to partition this change into within-species body size versus compositional changes, we detected prevailing decreases in body size through time driven primarily by fish, with more variable patterns in other taxa. We found that change in assemblage composition contributes more to body size changes than within-species trends, but both components show substantial variation in magnitude and direction. The biomass of assemblages remains quite stable as decreases in body size trade off with increases in abundance.
  •  
6.
  • Toreti, A, et al. (author)
  • Narrowing uncertainties in the effects of elevated CO2 on crops
  • 2020
  • In: Nature Food. - : Springer Science and Business Media LLC. - 2662-1355. ; 1, s. 775-782
  • Journal article (peer-reviewed)abstract
    • Plant responses to rising atmospheric carbon dioxide (CO2) concentrations, together with projected variations in temperature and precipitation will determine future agricultural production. Estimates of the impacts of climate change on agriculture provide essential information to design effective adaptation strategies, and develop sustainable food systems. Here, we review the current experimental evidence and crop models on the effects of elevated CO2 concentrations. Recent concerted efforts have narrowed the uncertainties in CO2-induced crop responses so that climate change impact simulations omitting CO2 can now be eliminated. To address remaining knowledge gaps and uncertainties in estimating the effects of elevated CO2 and climate change on crops, future research should expand experiments on more crop species under a wider range of growing conditions, improve the representation of responses to climate extremes in crop models, and simulate additional crop physiological processes related to nutritional quality.
  •  
7.
  • Adam, J., et al. (author)
  • Fumarate Hydratase Deletion in Pancreatic beta Cells Leads to Progressive Diabetes
  • 2017
  • In: Cell Reports. - : Elsevier BV. - 2211-1247. ; 20:13, s. 3135-3148
  • Journal article (peer-reviewed)abstract
    • We explored the role of the Krebs cycle enzyme fumarate hydratase (FH) in glucose-stimulated insulin secretion (GSIS). Mice lacking Fh1 in pancreatic beta cells (Fh1 beta KO mice) appear normal for 6-8 weeks but then develop progressive glucose intolerance and diabetes. Glucose tolerance is rescued by expression of mitochondrial or cytosolic FH but not by deletion of Hif1 alpha or Nrf2. Progressive hyperglycemia in Fh1bKO mice led to dysregulated metabolism in b cells, a decrease in glucose-induced ATP production, electrical activity, cytoplasmic [Ca2+](i) elevation, and GSIS. Fh1 loss resulted in elevated intracellular fumarate, promoting succination of critical cysteines in GAPDH, GMPR, and PARK 7/DJ-1 and cytoplasmic acidification. Intracellular fumarate levels were increased in islets exposed to high glucose and in islets from human donors with type 2 diabetes (T2D). The impaired GSIS in islets from diabetic Fh1bKO mice was ameliorated after culture under normoglycemic conditions. These studies highlight the role of FH and dysregulated mitochondrial metabolism in T2D.
  •  
8.
  • Dams-O'Connor, K., et al. (author)
  • Alzheimer's Disease-Related Dementias Summit 2022: National Research Priorities for the Investigation of Post-Traumatic Brain Injury Alzheimer's Disease and Related Dementias
  • 2023
  • In: Journal of Neurotrauma. - : Mary Ann Liebert Inc. - 0897-7151 .- 1557-9042. ; 40:15-16, s. 1512-1523
  • Journal article (peer-reviewed)abstract
    • Traumatic Brain Injury (TBI) is a risk factor for Alzheimer's disease and Alzheimer's disease related dementias (AD/ADRD) and otherwise classified post-traumatic neurodegeneration (PTND). Targeted research is needed to elucidate the circumstances and mechanisms through which TBI contributes to the initiation, development, and progression of AD/ADRD pathologies including multiple etiology dementia (MED). The National Institutes of Health hosts triennial ADRD summits to inform a national research agenda, and TBI was included for a second time in 2022. A multidisciplinary expert panel of TBI and dementia researchers was convened to re-evaluate the 2019 research recommendations for understanding TBI as an AD/ADRD risk factor and to assess current progress and research gaps in understanding post-TBI AD/ADRD. Refined and new recommendations were presented during the MED special topic session at the virtual ADRD Summit in March 2022. Final research recommendations incorporating broad stakeholder input are organized into four priority areas as follows: (1) Promote interdisciplinary collaboration and data harmonization to accelerate progress of rigorous, clinically meaningful research; (2) Characterize clinical and biological phenotypes of PTND associated with varied lifetime TBI histories in diverse populations to validate multimodal biomarkers; (3) Establish and enrich infrastructure to support multimodal longitudinal studies of individuals with varied TBI exposure histories and standardized methods including common data elements (CDEs) for ante-mortem and post-mortem clinical and neuropathological characterization; and (4) Support basic and translational research to elucidate mechanistic pathways, development, progression, and clinical manifestations of post-TBI AD/ADRDs. Recommendations conceptualize TBI as a contributor to MED and emphasize the unique opportunity to study AD/ADRD following known exposure, to inform disease mechanisms and treatment targets for shared common AD/ADRD pathways.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view